• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207014 (2018)
Lin Hongxin, Zuo Ning, Zhuo Shuangmu*, and Chen Jianxin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207014 Cite this Article Set citation alerts
    Lin Hongxin, Zuo Ning, Zhuo Shuangmu, Chen Jianxin. Application of Multiphoton Microscopy in Disease Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 207014 Copy Citation Text show less
    References

    [1] Keahey P, Ramalingam P, Schmeler K et al. Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 10769-10773(2016). http://europepmc.org/articles/PMC5047189/?report=classic

    [2] Quang T, Schwarz R A, Dawsey S M et al. A tablet-interfaced high-resolution microendoscope with automated image interpretation for real-time evaluation of esophageal squamous cell neoplasia[J]. Gastrointestinal Endoscopy, 84, 834-841(2016). http://www.ncbi.nlm.nih.gov/pubmed/27036635

    [3] Skala M C, Squirrell J M, Vrotsos K M et al. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues[J]. Cancer Research, 65, 1180-1186(2005). http://pubmedcentralcanada.ca/pmcc/articles/PMC4189807/

    [4] Leggett C L, Wang K K. Computer-aided diagnosis in GI endoscopy: looking into the future[J]. Gastrointestinal Endoscopy, 84, 842-844(2016). http://www.ncbi.nlm.nih.gov/pubmed/27742045

    [5] Paoli J, Smedh M, Wennberg A M et al. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics[J]. Journal of Investigative Dermatology, 128, 1248-1255(2008). http://europepmc.org/abstract/MED/17989735

    [6] Dimitrow E, Ziemer M, Koehler M J et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma[J]. Journal of Investigative Dermatology, 129, 1752-1758(2009). http://www.ncbi.nlm.nih.gov/pubmed/19177136

    [7] Cicchi R, Vogler N, Kapsokalyvas D et al. From molecular structure to tissue architecture: collagen organization probed by SHG microscopy[J]. Journal of Biophotonics, 6, 129-142(2013). http://onlinelibrary.wiley.com/doi/10.1002/jbio.201200092/full

    [8] Chen S Y, Chen S U, Wu H Y et al. In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 478-492(2010). http://ieeexplore.ieee.org/document/5332290/

    [9] Jung J C, Mehta A D, Aksay E et al. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy[J]. Journal of Neurophysiology, 92, 3121-3133(2004). http://www.ncbi.nlm.nih.gov/pubmed/15128753

    [10] Lee H S, Liu Y, Chen H C et al. Optical biopsy of liver fibrosis by use of multiphoton microscopy[J]. Optics Letters, 29, 2614-2616(2004). http://ilarjournal.oxfordjournals.org/external-ref?access_num=10.1364/OL.29.002614&link_type=DOI

    [11] Rogart J N, Nagata J, Loeser C S et al. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo[J]. Clinical Gastroenterology and Hepatology, 6, 95-101(2008). http://www.sciencedirect.com/science/article/pii/S154235650700969X

    [12] Williams R M, Flesken-Nikitin A, Ellenson L H et al. Strategies for high resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy[J]. Translational Oncology, 3, 181-194(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC2887648/

    [13] Zipfel W R, Williams R M, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature biotechnology, 21, 1369-1377(2003). http://www.nature.com/nbt/journal/v21/n11/abs/nbt899.html

    [14] Ni M, Zhuo S M. Nonlinear optical microscopy: Endogenous signals and exogenous probes[J]. Annalen der Physik, 527, 471-489(2015). http://onlinelibrary.wiley.com/doi/10.1002/andp.201500119/full

    [15] König K. Multiphoton microscopy in life sciences[J]. Journal of microscopy, 200, 83-104(2000). http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2818.2000.00738.x/full

    [16] Adur J. Pelegati V B, de Thomaz A A, et al. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy[J]. Journal of Biomedical Optics, 17, 081407(2012). http://www.ncbi.nlm.nih.gov/pubmed/23224168

    [17] Zhuo S M, Chen J X, Wu G Z et al. Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy[J]. Applied Physics Letters, 96, 213704(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp%3farnumber%3d5473945

    [18] Zhuo S M, Zheng L Q, Chen J X et al. Depth-cumulated epithelial redox ratio and stromal collagen quantity as quantitative intrinsic indicators for differentiating normal, inflammatory, and dysplastic epithelial tissues[J]. Applied Physics Letters, 97, 173701(2010). http://scitation.aip.org/content/aip/journal/apl/97/17/10.1063/1.3505762

    [19] Zhuo S M, Yan J, Chen G et al. Label-free monitoring of colonic cancer progression using multiphoton microscopy[J]. Biomedical Optics Express, 2, 615-619(2011). http://www.opticsinfobase.org/abstract.cfm?uri=boe-2-3-615

    [20] Coda S, Thompson A J, Kennedy G T et al. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe[J]. Biomedical Optics Express, 5, 515-538(2014). http://www.opticsinfobase.org/abstract.cfm?uri=boe-5-2-515

    [21] Cicchi R, Sturiale A, Nesi G et al. Multiphoton morpho-functional imaging of healthy colon mucosa, adenomatous polyp and adenocarcinoma[J]. Biomedical Optics Express, 4, 1204-1213(2013). http://www.opticsinfobase.org/abstract.cfm?uri=boe-4-7-1204

    [22] Zhuo S M, Yan J, Chen G et al. Label-free imaging of basement membranes differentiates normal, precancerous, and cancerous colonic tissues by second-harmonic generation microscopy[J]. PloS One, 7, e38655(2012). http://europepmc.org/articles/PMC3371009/table/pone-0038655-t001/

    [23] Li L H, Chen Z F, Wang X F et al. Detection of morphologic alterations in rectal carcinoma following preoperative radiochemotherapy based on multiphoton microscopy imaging[J]. BMC cancer, 15, 142(2015). http://europepmc.org/abstract/med/25784120

    [24] Yan J, Zhuo S M, Chen G et al. Real-time optical diagnosis for surgical margin in low rectal cancer using multiphoton microscopy[J]. Surgical Endoscopy, 28, 36-41(2014). http://link.springer.com/article/10.1007/s00464-013-3153-7

    [25] Zhuo S M, Chen J X, Xie S S et al. Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals[J]. Journal of Biomedical Optics, 14, 020503(2009). http://www.ncbi.nlm.nih.gov/pubmed/19405709

    [26] Chen J X, Zhuo S M, Chen G et al. Establishing diagnostic features for identifying the mucosa and submucosa of normal and cancerous gastric tissues by multiphoton microscopy[J]. Gastrointestinal Endoscopy, 73, 802-807(2011).

    [27] Xu J, Kang D Y, Zeng Y P et al. Multiphoton microscopy for label-free identification of intramural metastasis in human esophageal squamous cell carcinoma[J]. Biomedical Optics Express, 8, 3360-3368(2017). http://europepmc.org/abstract/MED/28717572

    [28] Yan J, Zheng Y, Zheng X L et al. Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging[J]. Scientific Reports, 6, 31004(2016). http://www.ncbi.nlm.nih.gov/pubmed/27499365

    [29] Matsui T, Mizuno H, Sudo T et al. Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions[J]. Scientific Reports, 7, 6959(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5537268/

    [30] Xia G W, Zhi W J, Zou Y et al. Non-linear optical imaging and quantitative analysis of the pathological changes in normal and carcinomatous human colorectal muscularis[J]. Pathology, 49, 627-632(2017). http://europepmc.org/abstract/MED/28830688

    [31] Shirshin E A, Gurfinkel Y I, Priezzhev A V et al. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization[J]. Scientific Reports, 7, 1171(2017). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430894/

    [32] Czekalla C, Schönborn K H, Döge N et al. Body regions have an impact on the collagen/elastin index of the skin measured by non-invasive in vivo vertical two-photon microscopy[J]. Experimental Dermatology, 26, 822-824(2017). http://www.ncbi.nlm.nih.gov/pubmed/28094455

    [33] Czekalla C, Schönborn K H, Döge N et al. Impact of body site, age, and gender on the collagen/elastin index by noninvasive in vivo vertical two-photon microscopy[J]. Skin Pharmacology and Physiology, 30, 260-267(2017). http://www.ncbi.nlm.nih.gov/pubmed/28803240

    [34] Vieira-Damiani G, Lage D. Christofoletti Daldon P É, et al. Idiopathic atrophoderma of Pasini and Pierini: A case study of collagen and elastin texture by multiphoton microscopy[J]. Journal of the American Academy of Dermatology, 77, 930-937(2017). http://www.ncbi.nlm.nih.gov/pubmed/28389037

    [35] Pena A M, Strupler M, Boulesteix T et al. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy[J]. Optics Express, 13, 6268-6274(2005). http://www.ncbi.nlm.nih.gov/pubmed/19498682

    [36] Masters B R. So P T C. Confocal microscopy and multi-photon excitation microscopy of human skin invivo[J]. Optics Express, 8, 2-10(2001).

    [37] Koenig K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution[J]. Journal of Biomedical Optics, 8, 432-439(2003). http://europepmc.org/abstract/MED/12880349

    [38] Koehler M J, König K, Elsner P et al. In vivo assessment of human skin aging by multiphoton laser scanning tomography[J]. Optics Letters, 31, 2879-2881(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000012000007000102000001&idtype=cvips&gifs=Yes

    [39] Breunig H G, Studier H, König K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo[J]. Optics Express, 18, 7857-7871(2010). http://www.ncbi.nlm.nih.gov/pubmed/20588627

    [40] Koehler M J, Hahn S, Preller A et al. Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network[J]. Experimental Dermatology, 17, 519-523(2008). http://europepmc.org/abstract/MED/18201192

    [41] Masters B R. So P T C, Gratton E. Optical biopsy of in vivo human skin: multi-photon excitation microscopy[J]. Lasers in Medical Science, 13, 196-203(1998).

    [42] Lin S J, Wu R Jr, Tan H Y et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy[J]. Optics Letters, 30, 2275-2277(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000010000006000078000001&idtype=cvips&gifs=Yes

    [43] Tsai T H, Jee S H, Dong C Y et al. Multiphoton microscopy in dermatological imaging[J]. Journal of Dermatological Science, 56, 1-8(2009). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0218166948

    [44] Lin S J, Jee S H, Kuo C J et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging[J]. Optics Letters, 31, 2756-2758(2006). http://ilarjournal.oxfordjournals.org/external-ref?access_num=10.1364/OL.31.002756&link_type=DOI

    [45] Robertson D M, Rogers N A, Petroll W M et al. Second harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa[J]. Scientific Reports, 7, 46116(2017).

    [46] Zyablitskaya M, Takaoka A, Munteanu E L et al. Evaluation of therapeutic tissue crosslinking (TXL) for myopia using second harmonic generation signal microscopy in rabbit sclera[J]. Investigative Ophthalmology & Visual Science, 58, 21-29(2017). http://europepmc.org/abstract/MED/28055099

    [47] Marando C M, Park C Y, Liao J A et al. Revisiting the cornea and trabecular meshwork junction with 2-photon excitation fluorescence microscopy[J]. Cornea, 36, 704-711(2017). http://europepmc.org/abstract/MED/28368994

    [48] Chang Y L, Chen W L, Lo W et al. Characterization of corneal damage from Pseudomonas aeruginosa infection by the use of multiphoton microscopy[J]. Applied Physics Letters, 97, 183703(2010). http://d.wanfangdata.com.cn/Conference_WFHYXW431932.aspx

    [49] Teng S W, Tan H Y, Sun Y et al. Multiphoton fluorescence and second-harmonic-generation microscopy for imaging structural alterations in corneal scar tissue in penetrating full-thickness wound[J]. Archives of Ophthalmology, 125, 977-978(2007). http://labs.europepmc.org/abstract/MED/17620585

    [50] Lombardo M, Merino D, Loza-Alvarez P et al. Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure[J]. Biomedical Optics Express, 6, 2803-2818(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4541509/

    [51] McQuaid R, Li J J, Cummings A et al. . Second-harmonic reflection imaging of normal and accelerated corneal crosslinking using porcine corneas and the role of intraocular pressure[J]. Cornea, 33, 125-130(2014). http://europepmc.org/abstract/med/24322797

    [52] Aptel F, Olivier N, Deniset-Besseau A et al. Multimodal nonlinear imaging of the human cornea[J]. Investigative Ophthalmology & Visual Science, 51, 2459-2465(2010). http://europepmc.org/abstract/MED/20071677

    [53] Lo W, Teng S W, Tan H Y et al. Intact corneal stroma visualization of GFP mouse revealed by multiphoton imaging[J]. Microscopy Research and Technique, 69, 973-975(2006). http://www.ncbi.nlm.nih.gov/pubmed/16972234

    [54] Nuzzo V, Plamann K, Savoldelli M et al. In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty[J]. Journal of Biomedical Optics, 12, 064032(2007). http://www.ncbi.nlm.nih.gov/pubmed/18163848

    [55] Mercatelli R, Ratto F, Rossi F et al. Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy[J]. Journal of Biophotonics, 10, 75-83(2017). http://europepmc.org/abstract/MED/27472438

    [56] Wang T J, Lo W, Hsueh C M et al. Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty[J]. Journal of Biomedical Optics, 13, 034019(2008). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ024008651

    [57] Lo W, Chang Y L, Liu J S et al. Multimodal, multiphoton microscopy and image correlation analysis for characterizing corneal thermal damage[J]. Journal of Biomedical Optics, 14, 054003(2009). http://europepmc.org/abstract/MED/19895105

    [58] Hsueh C M, Lo W, Lin S J et al. Multiphoton microscopy: a new approach, in physiological studies and pathological diagnosis for ophthalmology[J]. Journal of Innovative Optical Health Sciences, 2, 45-60(2009). http://www.worldscientific.com/doi/abs/10.1142/S1793545809000309

    [59] Göppert-Mayer M. Uber elementarakte mit zwei quantensprüngen[J]. Annalen der Physik, 401, 273-294(1931).

    [60] Hoover E E, Squier J A. Advances in multiphoton microscopy technology[J]. Nature Photonics, 7, 93-101(2013). http://europepmc.org/abstract/med/24307915

    [61] Bloembergen N. Nonlinearoptics[M]. Singapore: World Scientific(1996).

    [62] Hoy C L, Durr N J, Chen P Y et al. Miniaturized probe for femtosecond laser microsurgery and two-photon imaging[J]. Optics Express, 16, 9996-10005(2008). http://pubmedcentralcanada.ca/pmcc/articles/PMC3143712/

    [63] Bao H C, Gu M. A 0.4-mm-diameter probe for nonlinear optical imaging[J]. Optics Express, 17, 10098-10104(2009). http://europepmc.org/abstract/MED/19506662

    [64] Bao H C, Allen J, Pattie R et al. Fast handheld two-photon fluorescence microendoscope with a 475 μm×475 μm field of view for in vivo imaging[J]. Optics Letters, 33, 1333-1335(2008).

    [65] Le Harzic R, Weinigel M, Riemann I et al. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens[J]. Optics Express, 16, 20588-20596(2008). http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20588

    [66] Andresen E R, Bouwmans G, Monneret S et al. Two-photon lensless endoscope[J]. Optics Express, 21, 20713-20721(2013). http://europepmc.org/abstract/med/24103944

    [67] Kondo T, Nakazawa T, Murata S et al. Stromal elastosis in papillary thyroid carcinomas[J]. Human Pathology, 36, 474-479(2005).

    [68] Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nature Reviews Cancer, 6, 392-401(2006).

    [69] Alberts B, Johnson A, Lewis J et al. Molecular biology of the cell[M]. New York: Garland Science(2002).

    [70] Kerr D. Clinical development of gene therapy for colorectal cancer[J]. Nature Reviews Cancer, 3, 615-622(2003). http://www.nature.com/nrc/journal/v3/n8/abs/nrc1147.html

    [71] Ramzi S, Vinay K, Tucker C et al. Robbins pathologic basis of disease[M]. Philadelphia: WB Saunders Company, 349-352(1999).

    [72] Skala M C, Riching K M, Gendron-Fitzpatrick A et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 19494-19499(2007). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148317/

    [73] Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues[J]. Neoplasia, 2, 89-117(2000). http://www.ncbi.nlm.nih.gov/pubmed/10933071

    [74] Pavlova I, Williams M, El-Naggar A et al. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue[J]. Clinical Cancer Research, 14, 2396-2404(2008). http://pubmedcentralcanada.ca/pmcc/articles/PMC2773159/

    [75] Hida J, Matsuda T, Kitaoka M et al. The role of basement membrane in colorectal cancer invasion and liver metastasis[J]. Cancer, 74, 592-598(1994). http://europepmc.org/abstract/med/8033038

    [76] Liotta L A, Tryggvason K, Garbisa S et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen[J]. Nature, 284, 67-68(1980). http://europepmc.org/abstract/MED/6243750

    [77] Visser R, Arends J W, Leigh I M et al. Patterns and composition of basement membranes in colon adenomas and adenocarcinomas[J]. Journal of Pathology, 170, 285-290(1993). http://onlinelibrary.wiley.com/doi/10.1002/path.1711700311/full

    [78] Alam M. Fitzpatrick's dermatology in general medicine[J]. Archives of Dermatology, 140, 372(2004). http://www.researchgate.net/publication/245930167_Fitzpatrick's_Dermatology_in_General_Medicine

    [79] Cicchi R, Massi D, Sestini S et al. Multidimensional non-linear laser imaging of Basal Cell Carcinoma[J]. Optics Express, 15, 10135-10148(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000016000011000035000001&idtype=cvips&gifs=Yes

    [80] Cicchi R, Sestini S, De Giorgi V et al. Nonlinear laser imaging of skin lesions[J]. Journal of Biophotonics, 1, 62-73(2008). http://www.opticsinfobase.org/abstract.cfm?URI=ECBO-2007-6633_34

    [81] Forreste J V. The eye: basic sciences in practice[M]. New York: W. B. Saunders(2002).

    [82] Michelacci Y M. Collagens and proteoglycans of the corneal extracellular matrix[J]. Brazilian Journal of Medical and Biological Research, 36, 1037-1046(2003). http://europepmc.org/abstract/MED/12886457

    [83] Masters B R, Böhnke M. Three-dimensional confocal microscopy of the living human eye[J]. Annual Review of Biomedical Engineering, 4, 69-91(2002). http://www.ncbi.nlm.nih.gov/pubmed/12117751/

    [84] Yeh A T, Nassif N, Zoumi A et al. Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence[J]. Optics Letters, 27, 2082-2084(2002). http://www.ncbi.nlm.nih.gov/pubmed/18033448

    [85] Teng S W, Tan H Y, Peng J L et al. Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye[J]. Investigative Ophthalmology & Visual Science, 47, 1216-1224(2006). http://europepmc.org/abstract/med/16505061

    [86] Han M, Giese G, Bille J F. Second harmonic generation imaging of collagen fibrils in cornea and sclera[J]. Optics Express, 13, 5791-5797(2005). http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-15-5791

    [87] Tan H Y, Sun Y, Lo W et al. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis[J]. Journal of Biomedical Optics, 12, 024013(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000013000009000109000001&idtype=cvips&gifs=Yes

    [88] Tan H Y, Sun Y, Lo W et al. Multiphoton fluorescence and second harmonic generation imaging of the structural alterations in keratoconus ex vivo[J]. Investigative Ophthalmology & Visual Science, 47, 5251-5259(2006). http://europepmc.org/abstract/MED/17122110

    [89] Morishige N, Wahlert A J, Kenney M C et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea[J]. Investigative Ophthalmology & Visual Science, 48, 1087-1094(2007). http://pubmedcentralcanada.ca/pmcc/articles/PMC1894888/

    [90] Brown D J, Morishige N, Neekhra A et al. Application of second harmonic imaging microscopy to assess structural changes in optic nerve head structure ex vivo[J]. Journal of Biomedical Optics, 12, 024029(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000006000005000050000001&idtype=cvips&gifs=Yes

    [91] Farid M, Morishige N, Lam L et al. Detection of corneal fibrosis by imaging second harmonic-generated signals in rabbit corneas treated with mitomycin C after excimer laser surface ablation[J]. Investigative Ophthalmology & Visual Science, 49, 4377-4383(2008). http://europepmc.org/articles/PMC4296573

    [92] Llewellyn M E. Barretto R P J, Delp S L, et al. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans[J]. Nature, 454, 784-788(2008).

    [93] LaComb R, Nadiarnykh O, Campagnola P J. Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation[J]. Biophysical Journal, 94, 4504-4514(2008). http://www.sciencedirect.com/science/article/pii/S000634950870105X

    [94] LaComb R, Nadiarnykh O, Carey S et al. . Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon[J]. Journal of Biomedical Optics, 13, 021109(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000015000009000193000001&idtype=cvips&gifs=Yes

    [95] Tuchin V V. Optical clearing of tissues and blood using immersion method[J]. Journal of Physics D: Applied Physics, 38, 2497-2518(2005). http://www.researchgate.net/publication/231017887_Optical_clearing_of_tissues_and_blood_using_the_immersion_method

    [96] Cicchi R, Pavone F S, Massi D et al. Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents[J]. Optics Express, 13, 2337-2344(2005). http://www.ncbi.nlm.nih.gov/pubmed/19495122

    [97] Wright A J, Poland S P, Girkin J M et al. Adaptive optics for enhanced signal in CARS microscopy[J]. Optics Express, 15, 18209-18219(2007). http://www.ncbi.nlm.nih.gov/pubmed/19551119

    [98] Rueckel M. Mack-Bucher J A, Denk W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 17137-17142(2006). http://www.jstor.org/stable/30052398

    Lin Hongxin, Zuo Ning, Zhuo Shuangmu, Chen Jianxin. Application of Multiphoton Microscopy in Disease Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 207014
    Download Citation