• Laser & Optoelectronics Progress
  • Vol. 59, Issue 12, 1215011 (2022)
Zhaoliang Meng1、2、3, Zetao Zhang1、*, Yuan Yang2, Guofeng Li3, Chongbo Tao3, and Yijiang Niu3
Author Affiliations
  • 1College of Electronic Information, Xi’an Polytechnic University, Xi’an 710600, Shaanxi , China
  • 2International Engineering College, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • 3Power Electronics Division of CRRC Yongji Motor Co., Ltd., Xi’an 710000, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1215011 Cite this Article Set citation alerts
    Zhaoliang Meng, Zetao Zhang, Yuan Yang, Guofeng Li, Chongbo Tao, Yijiang Niu. Improved XGBoost Stray Current Prediction and Interpretable Model[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215011 Copy Citation Text show less
    References

    [1] Chen C, Miao X R. Subway stray current monitoring and corrosion prediction[J]. Electrical & Energy Management Technology, 67-74(2017).

    [2] Lin X H. Study on calculation method and characteristic analysis of metro stray current in multiple power supply sections[D](2019).

    [3] Zaboli A, Vahidi B, Yousefi S et al. Evaluation and control of stray current in DC-electrified railway systems[J]. IEEE Transactions on Vehicular Technology, 66, 974-980(2017).

    [4] Ma C Y, Zhang D L, Wang Z et al. Study on ANFIS application in coal mining stray current security prediction[J]. Key Engineering Materials, 426/427, 216-219(2010).

    [5] Wang C T. A prediction method of metro stray current leakage level based on convolution neural network and BP neural network[P].

    [6] Liu J, Xu K Z, Cai B G et al. XGBoost-based fault prediction method for on-board train control equipment[J]. Journal of Beijing Jiaotong University, 45, 95-106(2021).

    [7] Li J S, Liu Z B, Yi H et al. Stray current prediction model for buried gas pipelines based on multiple regression models and extreme learning machine[J]. International Journal of Electrochemical Science, 16, 210253(2021).

    [8] Zhang A W, Dong Z, Kang X Y. Feature selection algorithms of airborne LiDAR combined with hyperspectral images based on XGBoost[J]. Chinese Journal of Lasers, 46, 0404003(2019).

    [9] Zhang L, Chen X B. Feature selection algorithm for dynamically weighted conditional mutual information[J]. Journal of Electronics & Information Technology, 43, 3028-3034(2021).

    [10] Li L, Su M X, Su B et al. Adaptive genetic algorithm and it’s experimental verification based on adaptive function[J]. Techniques of Automation and Applications, 39, 11-13, 19(2020).

    [11] Pang Y F, Fu G Y, Wang M Y et al. Parameter optimization of high deposition rate laser cladding based on the response surface method and genetic neural network model[J]. Chinese Journal of Lasers, 48, 0602112(2021).

    [12] Wang Y, Sherry Ni X. A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization[J]. International Journal of Database Management Systems, 11, 1-17(2019).

    [13] Zhang Q X, He L J, Zhang L S. Cloud tasks scheduling based on coalition game and profit allocation model with Shapley value method[J]. Computer Applications and Software, 37, 275-280, 320(2020).

    [14] Someh N G, Pishvaee M S, Sadjadi S J et al. A decision-making model for performance evaluation and profit sharing in a diagnostic laboratory network[J]. Journal of Evaluation in Clinical Practice, 26, 1498-1503(2020).

    [15] Li W[M]. Metro stray current corrosion monitoring and protection technology, 6-8(2004).

    Zhaoliang Meng, Zetao Zhang, Yuan Yang, Guofeng Li, Chongbo Tao, Yijiang Niu. Improved XGBoost Stray Current Prediction and Interpretable Model[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215011
    Download Citation