[2] Wagner P, Hampf D, Riede W. Passive optical space surveillance system for initial LEO object detection[C](2015).
[3] National Aeronautics and Space Administration[R]. Space debris quarterly news: report of national aeronautics and space administration, 25, 1-12(2021).
[4] Klinkrad H[M]. Space debris: models and risk analysis(2006).
[5] Schildknecht T, Musci R, Ploner M et al. Optical observations of space debris in GEO and in highly-eccentric orbits[J]. Advances in Space Research, 34, 901-911(2004).
[6] Zhou M Y, Hou J F, Wang D G et al. Design and verification of depolarized derotator alignment scheme in astronomical telescope[J]. Chinese Journal of Lasers, 47, 0604005(2020).
[7] Ai K, Cheng J J, Zhu K F et al. Design and realization of a novel poly-silicon light-emitting device based on standard CMOS technology[J]. Chinese Journal of Lasers, 47, 0701011(2020).
[8] Yao P P, Xu S L, Tu B H et al. Design of performance test system and analysis of temperature dependence for space-borne array CCD[J]. Chinese Journal of Lasers, 47, 0910001(2020).
[9] Escobal P R[M]. Methods of orbit determination(1965).
[10] Vallado D A, Carter S S. Accurate orbit determination from short-arc dense observational data[J]. The Journal of the Astronautical Sciences, 46, 195-213(1998).
[11] Milani A, Gronchi G F, de Farnocchia D et al. Topocentric orbit determination: algorithms for the next generation surveys[J]. Icarus, 195, 474-492(2008).
[12] Jia P Z, Wu L D. A reference vector algorithm for the initial orbit computation[J]. Acta Astronomica Sinica, 38, 353-358(1997).
[13] Wu L D[M]. Orbits and detection of satellite and space debris(2011).
[14] Earl M A. Determining the range of an artificial satellite using its observed trigonometric parallax[J]. Journal of the Royal Astronomical Society of Canada, 99, 50(2015).
[15] Chen Y L, Huang Y, Hu X G et al. Space target’s orbit determination using CCD and SLR techniques[J]. Annals of Shanghai Astronomical Observatory, CAS, 35, 112-121(2014).