• Acta Optica Sinica
  • Vol. 38, Issue 5, 0531001 (2018)
Keyan Hu, Yichuan Chen, Xiaohua Zhang, Wenjun Zhu, Weiqiang Shuai, and Yuehui Hu*
Author Affiliations
  • School of Mechanical and Electrical Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China
  • show less
    DOI: 10.3788/AOS201838.0531001 Cite this Article Set citation alerts
    Keyan Hu, Yichuan Chen, Xiaohua Zhang, Wenjun Zhu, Weiqiang Shuai, Yuehui Hu. Modulation Growth and Surface Hydrogenation Treatment of ZnO∶W Transparent Conductive Films[J]. Acta Optica Sinica, 2018, 38(5): 0531001 Copy Citation Text show less
    References

    [1] Wegener M, Eckert D, Roosen A. Manufacture of sub-μm thin, particulate-based ITO layers by roller coating[J]. Journal of the European Ceramic Society, 35, 2321-2332(2015). http://www.sciencedirect.com/science/article/pii/S0955221915000643

    [2] Cho S J, An T, Kim J Y et al. Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance[J]. Chemical Communications, 47, 6108-6110(2011). http://www.ncbi.nlm.nih.gov/pubmed/21523314

    [3] Cui H W, Zhang F C, Shao T T. First-principels study on electronic structure and optical properties of Sn-doped ZnO[J]. Acta Optica Sinica, 36, 0716002(2016).

    [4] Xu H, Lu N, Shi G et al. Biomimetic antireflective hierarchical arrays[J]. Langmuir, 27, 4963-4967(2011). http://europepmc.org/abstract/MED/21438564

    [5] Xiu Y, Zhang S, Yelundur V et al. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching[J]. Langmuir, 24, 10421-10426(2008). http://pubs.acs.org/doi/pdf/10.1021/la801206m

    [6] Barshilia H C, John S, Mahajan V. Nanometric multi-scale rough, transparent and anti-reflective ZnO superhydrophobic coatings on high temperature solar absorber surfaces[J]. Solar Energy Materials and Solar Cells, 107, 219-224(2012). http://www.sciencedirect.com/science/article/pii/S0927024812003340

    [7] Yang C H, Ma Z Q, Yuan J H. Influence of substrate temperature on properties of aluminum-doped zinc oxide films prepared by DC magnetron sputtering[J]. Acta Optica Sinica, 31, 0531001(2011).

    [8] Müller J, Rech B, Springer J et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 77, 917-930(2004). http://www.sciencedirect.com/science/article/pii/S0038092X04000647

    [9] Zhao L, Zuo Y H, Zhou C L et al. A highly efficient light-trapping structure for thin-film silicon solar cells[J]. Solar Energy, 84, 110-115(2010). http://www.sciencedirect.com/science/article/pii/S0038092X09002552

    [10] Fernandez S, Naranjo F B. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications[J]. Solar Energy Materials and Solar Cells, 94, 157-163(2010). http://www.sciencedirect.com/science/article/pii/S0927024809003018

    [11] Gombert A, Glaubitt W, Rose K et al. Antireflective transparent covers for solar devices[J]. Solar Energy, 68, 357-360(2000). http://www.sciencedirect.com/science/article/pii/S0038092X00000220

    [12] Huang Y F, Chattopadhyay S, Jen Y J et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2, 770-774(2007). http://www.nature.com/nnano/journal/v2/n12/abs/nnano.2007.389.html

    [13] Kobayashi H, Moronuki N, Kaneko A. Self-assembly of fine particles applied to the production of antireflective surfaces[J]. International Journal of Precision Engineering and Manufacturing, 9, 25-29(2008). http://www.dbpia.co.kr/Journal/ArticleDetail/768327

    [14] Min W L, Jiang B, Jiang P. Bioinspired self-cleaning antireflection coatings[J]. Advanced Materials, 20, 3914-3918(2008). http://www.worldscientific.com/doi/abs/10.1142/9789814354936_0004?mi=6esjn0&af=R&Contrib=JIANG%2C+B&content=articlesChapters&countTerms=true&target=default

    [15] Nakanishi T, Hiraoka T, Fujimoto A et al. Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting[J]. Japanese Journal of Applied Physics, 49, 075001(2010). http://adsabs.harvard.edu/abs/2010JaJAP..49g5001N

    [16] Tadanaga K, Yamaguchi N, Uraoka Y et al. Anti-reflective properties of nano-structured alumina thin films on poly (methyl methacrylate) substrates by the sol-gel process with hot water treatment[J]. Thin Solid Films, 516, 4526-4529(2008). http://www.sciencedirect.com/science/article/pii/S004060900700884X

    [17] Chao Y C, Chen C Y, Lin C A et al. Antireflection effect of ZnO nanorod arrays[J]. Journal of Materials Chemistry, 20, 8134-8138(2010). http://pubs.rsc.org/en/content/articlepdf/2010/jm/c0jm00516a

    [18] Liu Y, Das A, Xu S et al. Hybridizing ZnO nanowires with micropyramid silicon wafers as superhydrophobic high-efficiency solar cells[J]. Advanced Energy Materials, 2, 47-51(2012). http://onlinelibrary.wiley.com/doi/10.1002/aenm.201100287/pdf

    [19] Han S Y, Paul B K, Chang C. Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process[J]. Journal of Materials Chemistry, 22, 22906-22912(2012). http://pubs.rsc.org/en/content/articlepdf/2012/jm/c2jm33462c

    [20] Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications[J]. Biomicrofluidics, 5, 013411(2011). http://europepmc.org/articles/PMC3082348

    [21] Li B, Huang L, Ren N et al. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method[J]. Journal of Alloys and Compounds, 674, 368-375(2016). http://www.sciencedirect.com/science/article/pii/S0925838816306557

    [22] Yin S, Men X, Sun H et al. Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films[J]. Journal of Materials Chemistry A, 3, 12016-12022(2015). http://www.researchgate.net/publication/275673038_Enhanced_Photocurrent_Generation_of_Bio-inspired_GrapheneZnO_Composite_Film

    [23] Griffin G L, Yates JJ. Coadsorption studies of CO and H2 on ZnO[J]. The Journal of Chemical Physics, 77, 3751-3758(1982). http://scitation.aip.org/content/aip/journal/jcp/77/7/10.1063/1.444241

    [24] Scarano D, Bertarione S, Spoto G et al. FTIR spectroscopy of hydrogen, carbon monoxide, and methane adsorbed and co-adsorbed on zinc oxide[J]. Thin Solid Films, 400, 50-55(2001). http://www.sciencedirect.com/science/article/pii/S0040609001014729

    [25] Chatchai P, Murakami Y, Kishioka S et al. Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation[J]. Electrochimica Acta, 54, 1147-1152(2009). http://www.sciencedirect.com/science/article/pii/S0013468608010864

    Keyan Hu, Yichuan Chen, Xiaohua Zhang, Wenjun Zhu, Weiqiang Shuai, Yuehui Hu. Modulation Growth and Surface Hydrogenation Treatment of ZnO∶W Transparent Conductive Films[J]. Acta Optica Sinica, 2018, 38(5): 0531001
    Download Citation