• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823010 (2021)
Qin Chen*, Long Wen, Xianguang Yang, and Baojun Li
Author Affiliations
  • Institute of Nanophotonics, Jinan University, Guangzhou, Guangdong 511443, China
  • show less
    DOI: 10.3788/AOS202141.0823010 Cite this Article Set citation alerts
    Qin Chen, Long Wen, Xianguang Yang, Baojun Li. Structural Color Technology for High Pixel Density Image Sensors[J]. Acta Optica Sinica, 2021, 41(8): 0823010 Copy Citation Text show less
    Current image sensor technology[56]. (a) Diagrams of front-side illumination and back-side illumination CMOS image sensors; (b) schematic of Bayer array; (c) development trends of pixel pitch and luminous flux of image sensor
    Fig. 1. Current image sensor technology[56]. (a) Diagrams of front-side illumination and back-side illumination CMOS image sensors; (b) schematic of Bayer array; (c) development trends of pixel pitch and luminous flux of image sensor
    Typical color filter with micro-nano structure. (a) Structure of planar cavity[63]; (b) structure of grating waveguide[31]; (c) structure of metal nanohole array[76]; (d) dielectric nanostructures[34]
    Fig. 2. Typical color filter with micro-nano structure. (a) Structure of planar cavity[63]; (b) structure of grating waveguide[31]; (c) structure of metal nanohole array[76]; (d) dielectric nanostructures[34]
    Typical color rendering technique based on grating diffraction. (a) Color rendering technique based on blazed gratings and microlens[81]; (b) color rendering by Dammann gratings[79]; (c) scanning electron microscope and optical microscopic images of color rendering by Dammann gratings[83]; (d) color rendering grating with dielectric nanorod structures[84]
    Fig. 3. Typical color rendering technique based on grating diffraction. (a) Color rendering technique based on blazed gratings and microlens[81]; (b) color rendering by Dammann gratings[79]; (c) scanning electron microscope and optical microscopic images of color rendering by Dammann gratings[83]; (d) color rendering grating with dielectric nanorod structures[84]
    Typical color rendering technique based on surface plasmon. (a) Beam rendering structure with metal slit[96]; (b) spatially overlapped subwavelength Bull’s eye structure[98]; (c) coupled metal nanodisks[101]; (d) coupling structure of asymmetrical metal nanodisks and metal nanoring[105]; (e) orthogonal gold and silver nanorods[106]; (f) single metal nanorod[108]
    Fig. 4. Typical color rendering technique based on surface plasmon. (a) Beam rendering structure with metal slit[96]; (b) spatially overlapped subwavelength Bull’s eye structure[98]; (c) coupled metal nanodisks[101]; (d) coupling structure of asymmetrical metal nanodisks and metal nanoring[105]; (e) orthogonal gold and silver nanorods[106]; (f) single metal nanorod[108]
    Typical metasurface color rendering techniques. (a) Colorful metasurface hologram imaging[127]; (b) metalens with four foci for RGGB unit cell based on supercell method[131]; (c) metalens with three foci for RGB unit cell based on supercell method[113]; (d) metalens with three foci for RGB unit cell based on staggered phase array method[129]; (e) focusing of three foci in RGB space based on double layer metalens [132]
    Fig. 5. Typical metasurface color rendering techniques. (a) Colorful metasurface hologram imaging[127]; (b) metalens with four foci for RGGB unit cell based on supercell method[131]; (c) metalens with three foci for RGB unit cell based on supercell method[113]; (d) metalens with three foci for RGB unit cell based on staggered phase array method[129]; (e) focusing of three foci in RGB space based on double layer metalens [132]
    Typical dielectric nanoantenna color rendering techniques. (a) Single dielectric nanoantenna[139]; (b) image sensor with integrated dielectric nanoantennas[45]; (c) color rendering nanostructures for RGB bands obtained by inverse design[145]; (d) color rendering nanostructures for multiple wavelengths obtained by inverse design[147]
    Fig. 6. Typical dielectric nanoantenna color rendering techniques. (a) Single dielectric nanoantenna[139]; (b) image sensor with integrated dielectric nanoantennas[45]; (c) color rendering nanostructures for RGB bands obtained by inverse design[145]; (d) color rendering nanostructures for multiple wavelengths obtained by inverse design[147]
    Qin Chen, Long Wen, Xianguang Yang, Baojun Li. Structural Color Technology for High Pixel Density Image Sensors[J]. Acta Optica Sinica, 2021, 41(8): 0823010
    Download Citation