• Infrared and Laser Engineering
  • Vol. 47, Issue 3, 302002 (2018)
Zheng Yongchao1、2、*, Wang Yuzhao1、2, and Yue Chunyu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0302002 Cite this Article
    Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002 Copy Citation Text show less
    References

    [1] Huang Jian, Hu Shunxing, Cao Kaifa, et al. Remote sensing system for vertical profiles of atmospheric CO2[J]. Infrared and Laser Engineering, 2016, 45(4): 0417004. (in Chinese)

    [2] Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, et al. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4): 0411001. (in Chinese)

    [3] Hui Wen, Huang Fuxiang, Guo Qiang. Combined application of lightning detection data from satellite and ground-based observations[J]. Optics and Precision Engineering, 2018, 26(1): 218-229. (in Chinese)

    [4] Fu Chuanbo, Dan Li, Tang Jiaxiang, et al. Temporal and spatial characteristics of haze days and their relations with climatic factor during 1960~2013 over South China[J]. China Environmental Science, 2016, 36(5): 1313-1322. (in Chinese)

    [5] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the spac-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese)

    [6] Wang Guizhi, Gu Saiju, Chen Jibo. Assessment of the indirect economic loss caused by heavy haze in Beijing based on input-output model[J]. Environmental Engineering, 2016, 34(1): 17-19. (in Chinese)

    [7] Ren Fumin, Gao Hui, Liu Lvliu, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction[J]. Meteorological Monthly, 2014, 40(7): 860-874. (in Chinese)

    [8] Li Qingquan, Sun Chenghu, Yuan Yuan, et al. Major advances of China climate monitoring and diagnosis operation in recent 20 years[J]. Journal of Applied Meteorological Science, 2013, 24(6): 666-676. (in Chinese)

    [9] Xiao Ziniu. Advances of the short range climate monitoring and prediction in China[J]. Meteorological Monthly, 2010, 36(7): 21-25. (in Chinese)

    [10] Claus Weitkamp. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere [M]. New York: Springer, 2005: 1-18.

    [11] Takashi Fujii, Tetsuo Fukuchi. Laser Remote Sensing[M]. Boca Raton: CRC Press, 2005: 1-36.

    [12] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA′s lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2): 164-180.

    [13] Ansmann A, Müller D, Wandinger U, et al. Lidar profiling of aerosol optical and microphysical properties from space: overview, review, and outlook[C]//First International Conference on Remote Sensing and Geoinformation of the Environment, Proc of SPIE, 2013, 8795: 879502.

    [14] Guennadii G Matvienko. Modern concept of a spaceborne lidar[C]//Sixth International Symposium on Atmospheric and Ocean Optics, SPIE, 2001, 3983: 250-259.

    [15] Schutz B E, Zwally H J, Shuman C A. Overview of the ICESat Mission[J]. Geophysical Research Letters, 2005, 32: L21S01.

    [16] Sarah DeWitt. Ice cloud and land elevation mission comes to an end. space daily[EB/OL]. [2010-08-31]. http://www.spacedaily.com/reports/Ice_Cloud_And_Land_Elevation_Mission_Comes_To_An_End_999.html.

    [17] Paoli F, Blouvac J. CALIPSO: a small satellite in low earth orbit for the study of the clouds and aerosols[C]//Proceedings of the IAC, 2005: IAC-05-B5.2.02.

    [18] 8th CALIPSO Exploitation Review, 3rd Mission Extension Review (REDEM) at CNES Toulouse[EB/OL]. [2015-05-05]. http://calipso.cnes.fr/en/CALIPSO/GP_actualite.htm.

    [19] Bézy J -L, Leibrandt W, Hélière A, et al. System, spacecraft, and instrument concepts for the ESA Earth Explorer EarthCARE Mission[C]//Proceedings of 11th SPIE International Symposium on Remote Sensing, 2005, 5978: 19-22.

    [20] David Starr. NASA′s Aerosol-Cloud-Ecosystems (ACE) mission[C]//Hyperspectral Imaging & Sounding of the Environment, 2011.

    [21] Ti Chuang, Patrick Burns, Walters E B, et al. Space-borne, multi-wavelength solid-state lasers for NASA′s cloud aerosol transport system for international space station[C]//SPIE, 2013, 8599: 85990N-1-14.

    [22] Sun Qiang, Fan Xuehua, Xia Xiang′ao. Observation and analysis of aerosol vertical distribution characteristics in north china plain[J]. Meteorological and Environmental Sciences, 2016, 39(1): 73-79. (in Chinese)

    [23] Wang Chaojie, Wang Bo, Guo Huinan, et al. Online measurement of atmospheric density based on space vehicle platform[J]. Optics and Precision Engineering, 2017, 25(1): 15-20. (in Chinese)

    [24] Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)

    [25] Jiang Xuegong, Chen Shoujun, Yun Jingbo. Analysis on characteristics of vertical structure of sand and dust during dust storm process based on CALIPSO data[J]. Meteorological Monthly, 2014, 40(3): 269-279. (in Chinese)

    [26] Winker D, Vaughan M, Hunt B. The CALIPSO mission and initial results from CLIOP[C]//Lidar Remote Sensing for Environmental MonitoringVII, 2006, 6409: 640902.

    [27] Rodier S, Zhai P, Josset D, et al. CALIPSO lidar measurments for ocean sub-surface studies[C]//34th International Symposium on Remote Sensing of Environment, 2011.

    [28] James H Churnside, Brandi J McCarty, Lu Xiaomei. Subsurface ocean signals from an orbiting polarization lidar[J]. Remote Sensing, 2013, 5(7): 3457-3475.

    [29] Behrenfeld M J, Hu Yongxiang, Hostetler C A, et al. Space-borne lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4630.

    [30] WMO. Instrument: ATLAS [EB/OL]. [2012-03-04]. http://www.wmo-sat.info/oscar/instruments/view/51.

    [31] Kelly M Brunt, Sinéad L Farrell, Vanessa M Escobar. ICESat-2: A next generation laser altimeter for space-borne determination of surface elevation[C]//93rd American Meteorological Society Annual Meeting, 2013.

    [32] David J Harding. NASA′s Lidar measurements of the Earth′s surface from space[C]//Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), 2012.

    [33] Charon Birkett, Markus T, Neumann T. The ICESat-2 Mission-laser altimetry of ice, clouds and land elevation and also ocean, coastal, and continental waters[C]//OSTM SWT (Science Working Team), 2011.

    [34] Zeromskis E, Wandinger U, Althausen D, et al. Coherent Doppler lidar for studies of transport and mixing processes in the lower atmosphere [C]//22nd International Lidar Conference, 2004, 561: 123-125.

    [35] Kameyama S, Ando T, Asaka K, et al. Compact all fiber pulsed coherent doppler lidar system for wind sensing[J]. Appl Opt, 2007, 46(11): 1953-1962.

    [36] World Meteorological Organization. Preliminary statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas[R]. WMO/TD, 1998.

    [37] Kin P Chan, Dennis K Killinger. Short-pules coherent Doppler Nd:YAG lidar[J]. Optical Engineerring, 1991, 14(15): 776-785.

    [38] Beranek R G, Bilbro J W, Fitzjarrald D E, et al. Laser Atmospheric Wind Sounder (LAWS)[C]//Proc SPIE, 1989, 1062: doi 10.1117/12.951882.

    [39] Baker W E, Emmitt G D, Robertson F, et al. Lidar-measured winds from space: a key component for weather and climate prediction[J]. Bull American Meteorological Society, 1995, 76(6): 869-888.

    [40] National Research Council (NRC). Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond[M]. Washington DC: The National Academic Press, 2007.

    [41] Huffaker R M. Feasibility study of satellite-borne lidar global wind monitoring system[R]. NOAA Tech Memo ERL WPL-37, 1978.

    [42] Jerome Caron, Yannig Durand. Operating wavelengths optimization for a space borne lidar measuring atmospheric CO2[J]. Applied Optics, 2009, 48: 5413-5422.

    [43] Caron J, Durand Y, Bezy J L, et al. Performance modeling for A-SCOPE, a space borne lidar measuring atmospheric CO2[C]//SPIE, 2009, 7479: 74790E.

    [44] Ehret G, Kiemle C, Wirth M, et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis [J]. Applied Physics B, 2008, 90: 593-608.

    [45] University of Michigan in Ann Arbor, Michigan, USA. Active Sensing of CO2 Emissions over Night 5, Days, and Sea 50 ns (ASCENDS) Mission[R]. NASA Science Definition and Planning Workshop Report, 2008: 78.

    [46] James B Abshire, Haris Riris, Graham R Allan. A lidar approach to measure CO2 concentrations from space for the ASCENDS mission[C]//SPIE, 2010, 7832, 78320D: 1-13.

    CLP Journals

    [1] JING Min, CHEN Manlong, DING Min, ZHANG Qi, YANG Fan, MA Zhenyuan. Oil recognition based on fluorescence-lifetime decay curve combined with support vector machine[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 258

    Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002
    Download Citation