• Laser & Optoelectronics Progress
  • Vol. 56, Issue 19, 192302 (2019)
Dengming Wu1, Da Teng2、*, Qing Cao1、**, Lihua Bai1, and Zhe Li1
Author Affiliations
  • 1Department of Physics Shanghai University, Shanghai 200444, China
  • 2School of Physicsand Electronic Engineering Zhengzhou Normal University, Zhengzhou, Henan 450044, China
  • show less
    DOI: 10.3788/LOP56.192302 Cite this Article Set citation alerts
    Dengming Wu, Da Teng, Qing Cao, Lihua Bai, Zhe Li. Cos-Gaussian Beams Propagating Inside Terahertz Parallel-Plate Waveguides[J]. Laser & Optoelectronics Progress, 2019, 56(19): 192302 Copy Citation Text show less
    References

    [1] Mittleman D M. Perspective:terahertz science and technology[J]. Journal of Applied Physics, 122, 230901(2017).

    [2] Zhang L, Zhang M, Liang H W. Realization of full control of a terahertz wave using flexible metasurfaces[J]. Advanced Optical Materials, 5, 1700486(2017).

    [3] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 20, 1716-1718(1995).

    [4] Mittleman D. Sensing with terahertz radiation[M]. Berlin, Heidelberg: Springer(2003).

    [5] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).

    [6] Karl N J. McKinney R W, Monnai Y, et al. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna[J]. Nature Photonics, 9, 717-720(2015).

    [7] Rusina A, Durach M, Nelson K A et al. Nanoconcentration of terahertz radiation in plasmonic waveguides[J]. Optics Express, 16, 18576-18589(2008).

    [8] Liang H W, Ruan S C, Zhang M et al. Nanofocusing of terahertz wave on conical metal wire waveguides[J]. Optics Communications, 283, 262-264(2010).

    [9] Gao H, Cao Q, Zhu M N et al. Nanofocusing of terahertz wave in a tapered hyperbolic metal waveguide[J]. Optics Express, 22, 32071-32081(2014).

    [10] Seo M A, Park H R, Koo S M et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit[J]. Nature Photonics, 3, 152-156(2009).

    [11] Zhan H, Mendis R, Mittleman D M. Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides[J]. Optics Express, 18, 9643-9650(2010).

    [12] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).

    [13] Awad M M, Cheville R A. Transmission terahertz waveguide-based imaging below the diffraction limit[J]. Applied Physics Letters, 86, 221107(2005).

    [14] Wächter M, Nagel M, Kurz H. Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission[J]. Applied Physics Letters, 90, 061111(2007).

    [15] Chen D R, Chen H B. A novel low-loss terahertz waveguide: polymer tube[J]. Optics Express, 18, 3762-3767(2010).

    [16] Liang H W, Ruan S C, Zhang M. Terahertz surface wave propagation and focusing on conical metal wires[J]. Optics Express, 16, 18241-18248(2008).

    [17] Gallot G, Jamison S P. McGowan R W, et al. Terahertz waveguides[J]. Journal of the Optical Society of America B, 17, 851-863(2000).

    [18] Wang K, Cao Q, Zhang H F et al. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric[J]. Optics Communications, 417, 57-61(2018).

    [19] Mendis R, Mittleman D M. An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation[J]. Journal of the Optical Society of America B, 26, A6-A13(2009).

    [20] Kim S H, Lee E S, Ji Y B et al. Improvement of THz coupling using a tapered parallel-plate waveguide[J]. Optics Express, 18, 1289-1295(2010).

    [21] Markov A, Guerboukha H, Skorobogatiy M. Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities [Invited][J]. Journal of the Optical Society of America B, 31, 2587-2600(2014).

    [22] Cao Q, Jahns J. Azimuthally polarized surface plasmons as effective terahertz waveguides[J]. Optics Express, 13, 511-518(2005).

    [23] He X Y, Wang Q J, Yu S F. Numerical study of gain-assisted terahertz hybrid plasmonic waveguide[J]. Plasmonics, 7, 571-577(2012).

    [24] Li H S, Atakaramians S, Lwin R et al. Flexible single-mode hollow-core terahertz fiber with metamaterial cladding[J]. Optica, 3, 941-947(2016).

    [25] Atakaramians S, Afshar V S, Monro T M et al. Terahertz dielectric waveguides[J]. Advances in Optics and Photonics, 5, 169-215(2013).

    [26] Chen Y, Cao J G, Xu Y M et al. Fano resonance sensing characteristics of metal-dielectric-metal waveguide coupling square cavity with bimetallic baffle[J]. Chinese Journal of Lasers, 46, 0213001(2019).

    [27] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 26, 846-848(2001).

    [28] Harsha S S, Laman N, Grischkowsky D. High-Q terahertz Bragg resonances within a metal parallel plate waveguide[J]. Applied Physics Letters, 94, 091118(2009).

    [29] Laman N, Harsha S S, Grischkowsky D et al. High-resolution waveguide THz spectroscopy of biological molecules[J]. Biophysical Journal, 94, 1010-1020(2008).

    [30] Eyyubo lu H T, Baykal Y. Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in a turbulent atmosphere[J]. Optics Express, 12, 4659-4674(2004).

    [31] Zhou G Q, Chu X X. Propagation of a partially coherent cosine-Gaussian beam through an ABCD optical system in turbulent atmosphere[J]. Optics Express, 17, 10529-10534(2009).

    [32] Huang Y C, Cai D F, Zhang T R. Beam waist width and waist location of cosh-Gaussian beams in a gradient-index medium[J]. Laser & Optoelectronics Progress, 52, 022601(2015).

    [33] Yang Y T, Zhang T R, Gong X. Propagation of cosine-Gaussian beams in spherically aberrated fractional Fourier transform system[J]. Acta Optica Sinica, 37, 0207001(2017).

    [34] Zhu S J, Chen Y H, Wang J et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Optics Express, 23, 33099-33115(2015).

    [35] Chen R P, Ni Y Z, Chu X X. Propagation of a cos-Gaussian beam in a Kerr medium[J]. Optics & Laser Technology, 43, 483-487(2011).

    [36] Keshavarz A. Propagation of cos-Gaussian beam in photorefractive crystal[J]. World Academy of Science, Engineering and Technology, 9, 742-745(2015).

    [37] Pozar D M. Microwave engineering[M]. Hoboken: John Wiley & Sons(2009).

    [38] Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 5, 1550-1567(1966).

    [39] Cao Q, Deng X M. Corrections to the paraxial approximation of an arbitrary free-propagation beam[J]. Journal of the Optical Society of America A, 15, 1144-1148(1998).

    [40] Ordal M A, Bell R J, Alexander R W et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 24, 4493-4499(1985).

    Dengming Wu, Da Teng, Qing Cao, Lihua Bai, Zhe Li. Cos-Gaussian Beams Propagating Inside Terahertz Parallel-Plate Waveguides[J]. Laser & Optoelectronics Progress, 2019, 56(19): 192302
    Download Citation