• Laser & Optoelectronics Progress
  • Vol. 54, Issue 3, 31702 (2017)
Yao Xinli*, Ji Kunhao, Liu Guipeng, Shi Weisong, and Gao Wanrong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.031702 Cite this Article Set citation alerts
    Yao Xinli, Ji Kunhao, Liu Guipeng, Shi Weisong, Gao Wanrong. Blood Flow Imaging by Optical Coherence Tomography Based on Speckle Variance and Doppler Algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(3): 31702 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    [2] Zhu Hailong. Swept source optical coherence tomography system based on LabVIEW[D]. Hangzhou: Hangzhou Dianzi University, 2013.

    [3] Shi Weisong, Gao Wanrong, Chen Chaoliang. Handheld swept source optical coherence tomography for imaging human skin in vivo[J]. Acta Optica Sinica, 2015, 35(11): 1117001.

    [4] Wu Tong, Ding Zhihua. Development of 20 kHz swept source optical coherence tomography system[J]. Chinese J Lasers, 2009, 36(2): 503-508.

    [5] Wang Ling, Zhang Lielie, Zhou Qingqing, et al. OCT-based improvement of geometrical controllability of 3D-bioprinted porous hydrogel scaffolds[J]. Chinese J Lasers, 2016, 43(6): 0607001.

    [6] He Qiyu, Li Zhongliang, Wang Xiangzhao, et al. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optica Sinica, 2016, 36(10): 1011003.

    [7] Blatter C, Weingast J, Alex A, et al. In situ structural and microangiographic assessment of human skin lesions with high-speed OCT[J]. Biomedical Optics Express, 2012, 3(10): 2636-2646.

    [8] Mariampillai A, Leung M K K, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 2010, 35(8): 1257-1259.

    [9] Zhang A Q, Zhang Q Q, Chen C L, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 2015, 20(10): 100901.

    [10] Wang R K, Jacques S L, Ma Z H, et al. Three dimensional optical angiography[J]. Optics Express, 2007, 15(7): 4083-4097.

    [11] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 2005, 13(14): 5234-5239.

    [12] Mariampillai A, Standish B A, Moriyama E H, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 2008, 33(13): 1530-1532.

    [13] Jonathan E, Enfield J, Leahy M J. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images[J]. Journal of Biophotonics, 2011, 4(9): 583-587.

    [14] Blatter C, Klein T, Grajciar B, et al. Ultrahigh-speed non-invasive widefield angiography[J]. Journal of Biomedical Optics, 2012, 17(7): 070505.

    [15] Huang Y P, Zhang Q Q, Thorell M R, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms[J]. Ophthalmic Surgery, Lasers and Imaging Retina, 2014, 45(5): 382-389.

    [16] Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725.

    [17] Jia Y L, Bailey S T, Hwang T S, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): E2395-E2402.

    [18] Leitgeb R A, Schmetterer L, Drexler W, et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(23): 3116-3121.

    [19] White B R, Pierce M C, Nassif N, et al. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography[J]. Optics Express, 2003, 11(25): 3490-3497.

    [20] Fingler J, Schwartz D, Yang C H, et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 2007, 15(20): 12636-12653.

    [21] Vakoc B J, Lanning R M, Tyrrell J A, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 2009, 15(10): 1219-1223.

    [22] Kurokawa K, Sasaki K, Makita S, et al. Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics[J]. Optics Express, 2012, 20(20): 22796-22812.

    [23] Vakoc B J, Yun S H, de Boer J F, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 2005, 13(14): 5483-5493

    Yao Xinli, Ji Kunhao, Liu Guipeng, Shi Weisong, Gao Wanrong. Blood Flow Imaging by Optical Coherence Tomography Based on Speckle Variance and Doppler Algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(3): 31702
    Download Citation