[1] Bautista A, Moral C, Blanco G et al. Influence of sintering on the corrosion behavior of a Ti-6Al-4V alloy[J]. Materials and Corrosion, 56, 98-103(2005).
[2] Haghighi S E, Lu H B, Jian G Y et al. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti-Fe-Ta alloys[J]. Materials & Design, 76, 47-54(2015).
[3] Narayanan R, Seshadri S K. Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4V[J]. Corrosion Science, 50, 1521-1529(2008).
[4] He Y, Qu X H, Wang Y et al. The development and application of overview of titanium alloy[J]. Equipment Manufacturing Technology, 160-161(2014).
[5] Wang Y, Yin Y Y, Wu G L et al. The microstructure and cavitation erosion resistance of Ti6Al4V alloy treated by laser gas nitriding with scanning galvanometer[J]. Optics & Laser Technology, 153, 108270(2022).
[6] He D Q, Zheng S X, Pu J B et al. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film[J]. Tribology International, 82, 20-27(2015).
[7] Zhao Q C, Wang L, Hu T C et al. Research on the preparation of zirconia coating on titanium alloy surface and its tribological properties[J]. Lubricants, 12, 154(2024).
[8] Nwobu A I P, Rawlings R D, West D R F. Nitride formation in titanium based substrates during laser surface melting in nitrogen–argon atmospheres[J]. Acta Materialia, 47, 631-643(1999).
[9] Zhou B, Li X S, Li G F et al. TA1 surface-traceable DM code marking based on low-power laser nitriding[J]. Laser & Optoelectronics Progress, 62, 0314002(2025).
[10] Schaaf P, Kaspar J, Höche D. Laser gas‒assisted nitriding of Ti alloys[M]. Comprehensive materials processing, 261-278(2014).
[11] Chen X K, Wu G, Wang R et al. Laser nitriding of titanium alloy in the atmosphere environment[J]. Surface and Coatings Technology, 201, 4843-4846(2007).
[12] Li Z Y, Han D X, Jiao S K et al. Practice and prospect of laser additive manufacturing in aerospace field[J]. Chinese Journal of Lasers, 51, 2402305(2024).
[13] Sun X J, Yuan D, Wei C et al. Advances in the study of interfaces in laser additive manufacturing of multi-materials with significant differences in physical properties (invited)[J]. Chinese Journal of Lasers, 51, 0102003(2024).
[14] Li R D, Wang M B, Yuan T C et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 319, 117-128(2017).
[15] Zhang D Y, Sun S J, Qiu D et al. Metal alloys for fusion-based additive manufacturing[J]. Advanced Engineering Materials, 20, 1700952(2018).
[16] Zhou R, Liu Y, Zhou C S et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting[J]. Intermetallics, 94, 165-171(2018).
[17] Tong Q, Chen Q Z, Mo Q F et al. Effects of pre-set Ti powder on microstructure and properties of laser nitriding TC4 coating[J]. China Surface Engineering, 31, 167-174(2018).
[18] Zeng C Y, Wen H, Bellamy H et al. Titanium and nitrogen interactions under laser additive manufacturing conditions[J]. Surface and Coatings Technology, 378, 124955(2019).
[19] Morton P A, Taylor H C, Murr L E et al. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. Journal of Materials Science & Technology, 45, 98-107(2020).
[20] Xu J X, Lane C D, Ou J et al. Diffusion of nitrogen in solid titanium at elevated temperature and the influence on the microstructure[J]. Journal of Materials Research and Technology, 12, 125-137(2021).
[21] Kato K. Micro-mechanisms of wear: wear modes[J]. Wear, 153, 277-295(1992).
[22] Fu G Y, Zhang H S, Cao L Q. Numerical simulation for gas nitriding of Ti[J]. Rare Metal Materials and Engineering, 38, 505-508(2009).
[23] Deng Z Y. Purification of ordinary nitrogen by coarse titanium powder and its application[J]. New Technology & New Process, 39-41(2000).
[24] Han J, Jia S L, Liu Y D et al. Study on the laser melting procedure for the specified zone of the TC4 titanium alloy[J]. Crystals, 13, 1041(2023).
[25] Feng E H, Chen R, Di S X et al. Effect of heat treatment on microstructure and mechanical properties of TC4 alloy by selective laser melting[J]. Chinese Journal of Lasers, 51, 1002321(2024).
[26] Rheins C, Pieters M[M]. Titanium and titanium alloys, 23-27(2005).
[27] Feng Z H, Wei K M, Wang T Y et al. Effect of laser scanning speed on the surface characteristics and wear resistance of TiZrAlV alloy via laser gas nitriding[J]. Surface and Coatings Technology, 500, 131909(2025).
[28] Essoussi H, Bougueraa F Z, Ettaqi S. Microstructure, microhardness, and tribological behavior of Ti-6Al-4V nitrided by laser irradiation[J]. The International Journal of Advanced Manufacturing Technology, 134, 445-451(2024).
[29] Zhang P L, Cheng Q Q, Yi G W et al. The microstructures and mechanical properties of martensite Ti and TiN phases in a Ti6Al4V laser-assisted nitriding layer[J]. Materials Characterization, 178, 111262(2021).
[30] Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM)[J]. Materials Characterization, 131, 188-194(2017).
[31] Lin Y C, Lin Y C, Chen Y C. Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder[J]. Materials & Design, 36, 584-589(2012).
[32] Chen X W, Li M L, Zhang D F et al. Corrosion resistance of MoS2-modified titanium alloy micro-arc oxidation coating[J]. Surface and Coatings Technology, 433, 128127(2022).
[33] Kaspar J, Bretschneider J, Jacob S et al. Microstructure, hardness and cavitation erosion behaviour of Ti-6Al-4V laser nitrided under different gas atmospheres[J]. Surface Engineering, 23, 99-106(2007).
[34] Grugel R N. Secondary and tertiary dendrite arm spacing relationships in directionally solidified Al-Si alloys[J]. Journal of Materials Science, 28, 677-683(1993).