• Chinese Journal of Lasers
  • Vol. 52, Issue 12, 1202305 (2025)
Guolong Wu1,2,3, Jie Wang1,2,3, Tianliang Zhang1,2,3, Ye Wang1,2,3..., Qunli Zhang1,2,3 and Jianhua Yao1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • 2Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • 3Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou 310023, Zhejiang , China
  • show less
    DOI: 10.3788/CJL250492 Cite this Article Set citation alerts
    Guolong Wu, Jie Wang, Tianliang Zhang, Ye Wang, Qunli Zhang, Jianhua Yao. Study on Microstructure and Properties of TC4 Alloy by Selective Laser Melting Under Nitrogen‑Containing Atmosphere[J]. Chinese Journal of Lasers, 2025, 52(12): 1202305 Copy Citation Text show less
    References

    [1] Bautista A, Moral C, Blanco G et al. Influence of sintering on the corrosion behavior of a Ti-6Al-4V alloy[J]. Materials and Corrosion, 56, 98-103(2005).

    [2] Haghighi S E, Lu H B, Jian G Y et al. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti-Fe-Ta alloys[J]. Materials & Design, 76, 47-54(2015).

    [3] Narayanan R, Seshadri S K. Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4V[J]. Corrosion Science, 50, 1521-1529(2008).

    [4] He Y, Qu X H, Wang Y et al. The development and application of overview of titanium alloy[J]. Equipment Manufacturing Technology, 160-161(2014).

    [5] Wang Y, Yin Y Y, Wu G L et al. The microstructure and cavitation erosion resistance of Ti6Al4V alloy treated by laser gas nitriding with scanning galvanometer[J]. Optics & Laser Technology, 153, 108270(2022).

    [6] He D Q, Zheng S X, Pu J B et al. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film[J]. Tribology International, 82, 20-27(2015).

    [7] Zhao Q C, Wang L, Hu T C et al. Research on the preparation of zirconia coating on titanium alloy surface and its tribological properties[J]. Lubricants, 12, 154(2024).

    [8] Nwobu A I P, Rawlings R D, West D R F. Nitride formation in titanium based substrates during laser surface melting in nitrogen–argon atmospheres[J]. Acta Materialia, 47, 631-643(1999).

    [9] Zhou B, Li X S, Li G F et al. TA1 surface-traceable DM code marking based on low-power laser nitriding[J]. Laser & Optoelectronics Progress, 62, 0314002(2025).

    [10] Schaaf P, Kaspar J, Höche D. Laser gas‒assisted nitriding of Ti alloys[M]. Comprehensive materials processing, 261-278(2014).

    [11] Chen X K, Wu G, Wang R et al. Laser nitriding of titanium alloy in the atmosphere environment[J]. Surface and Coatings Technology, 201, 4843-4846(2007).

    [12] Li Z Y, Han D X, Jiao S K et al. Practice and prospect of laser additive manufacturing in aerospace field[J]. Chinese Journal of Lasers, 51, 2402305(2024).

    [13] Sun X J, Yuan D, Wei C et al. Advances in the study of interfaces in laser additive manufacturing of multi-materials with significant differences in physical properties (invited)[J]. Chinese Journal of Lasers, 51, 0102003(2024).

    [14] Li R D, Wang M B, Yuan T C et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 319, 117-128(2017).

    [15] Zhang D Y, Sun S J, Qiu D et al. Metal alloys for fusion-based additive manufacturing[J]. Advanced Engineering Materials, 20, 1700952(2018).

    [16] Zhou R, Liu Y, Zhou C S et al. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting[J]. Intermetallics, 94, 165-171(2018).

    [17] Tong Q, Chen Q Z, Mo Q F et al. Effects of pre-set Ti powder on microstructure and properties of laser nitriding TC4 coating[J]. China Surface Engineering, 31, 167-174(2018).

    [18] Zeng C Y, Wen H, Bellamy H et al. Titanium and nitrogen interactions under laser additive manufacturing conditions[J]. Surface and Coatings Technology, 378, 124955(2019).

    [19] Morton P A, Taylor H C, Murr L E et al. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. Journal of Materials Science & Technology, 45, 98-107(2020).

    [20] Xu J X, Lane C D, Ou J et al. Diffusion of nitrogen in solid titanium at elevated temperature and the influence on the microstructure[J]. Journal of Materials Research and Technology, 12, 125-137(2021).

    [21] Kato K. Micro-mechanisms of wear: wear modes[J]. Wear, 153, 277-295(1992).

    [22] Fu G Y, Zhang H S, Cao L Q. Numerical simulation for gas nitriding of Ti[J]. Rare Metal Materials and Engineering, 38, 505-508(2009).

    [23] Deng Z Y. Purification of ordinary nitrogen by coarse titanium powder and its application[J]. New Technology & New Process, 39-41(2000).

    [24] Han J, Jia S L, Liu Y D et al. Study on the laser melting procedure for the specified zone of the TC4 titanium alloy[J]. Crystals, 13, 1041(2023).

    [25] Feng E H, Chen R, Di S X et al. Effect of heat treatment on microstructure and mechanical properties of TC4 alloy by selective laser melting[J]. Chinese Journal of Lasers, 51, 1002321(2024).

    [26] Rheins C, Pieters M[M]. Titanium and titanium alloys, 23-27(2005).

    [27] Feng Z H, Wei K M, Wang T Y et al. Effect of laser scanning speed on the surface characteristics and wear resistance of TiZrAlV alloy via laser gas nitriding[J]. Surface and Coatings Technology, 500, 131909(2025).

    [28] Essoussi H, Bougueraa F Z, Ettaqi S. Microstructure, microhardness, and tribological behavior of Ti-6Al-4V nitrided by laser irradiation[J]. The International Journal of Advanced Manufacturing Technology, 134, 445-451(2024).

    [29] Zhang P L, Cheng Q Q, Yi G W et al. The microstructures and mechanical properties of martensite Ti and TiN phases in a Ti6Al4V laser-assisted nitriding layer[J]. Materials Characterization, 178, 111262(2021).

    [30] Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM)[J]. Materials Characterization, 131, 188-194(2017).

    [31] Lin Y C, Lin Y C, Chen Y C. Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder[J]. Materials & Design, 36, 584-589(2012).

    [32] Chen X W, Li M L, Zhang D F et al. Corrosion resistance of MoS2-modified titanium alloy micro-arc oxidation coating[J]. Surface and Coatings Technology, 433, 128127(2022).

    [33] Kaspar J, Bretschneider J, Jacob S et al. Microstructure, hardness and cavitation erosion behaviour of Ti-6Al-4V laser nitrided under different gas atmospheres[J]. Surface Engineering, 23, 99-106(2007).

    [34] Grugel R N. Secondary and tertiary dendrite arm spacing relationships in directionally solidified Al-Si alloys[J]. Journal of Materials Science, 28, 677-683(1993).

    Guolong Wu, Jie Wang, Tianliang Zhang, Ye Wang, Qunli Zhang, Jianhua Yao. Study on Microstructure and Properties of TC4 Alloy by Selective Laser Melting Under Nitrogen‑Containing Atmosphere[J]. Chinese Journal of Lasers, 2025, 52(12): 1202305
    Download Citation