• Acta Photonica Sinica
  • Vol. 51, Issue 2, 0251201 (2022)
Jianwei ZHANG, Yongqiang NING*, Xing ZHANG, Yinli ZHOU, Chao CHEN, Hao WU, Li QIN, and Lijun WANG
Author Affiliations
  • State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • show less
    DOI: 10.3788/gzxb20225102.0251201 Cite this Article
    Jianwei ZHANG, Yongqiang NING, Xing ZHANG, Yinli ZHOU, Chao CHEN, Hao WU, Li QIN, Lijun WANG. Development and Future of Vertical Cavity Surface Emitting Lasers Operated at High Temperatures(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201 Copy Citation Text show less
    References

    [1] R N HALL, G N FENNER, G D KINGSLEY et al. Coherent light emission from GaAs junctions. Physical Review Letter, 9, 366-369(1962).

    [2] Z I ALFEROV, M ANDREEVV, D Z GARBUZOV et al. Investigation of the influence of the AlAs-GaAs hetero structure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics-Semiconductors, 4, 1573-1575(1970).

    [3] R PAOLETTI, S CODATO, C CORIASSO et al. 350 W high-brightness multi-emitter semiconductor laser module emitting at 976 nm(2021).

    [4] A BONI, S ARSLAN, G ERBERT et al. Epitaxial design progress for high power, efficiency and brightness in 970 nm broad area lasers(2021).

    [5] H LEEY, B TELL, F BROWN-GOEBELERK et al. Deep-red continuous wave top-surface-emitting vertical cavity AlGaAs super lattice lasers. IEEE Photonics Technology Letters, 3, 108-109(1991).

    [6] Y ISHIGE, H HASHIMOTO, N HAYAMIZU et al. Blue laser-assisted kW-class CW NIR fiber laser system for high quality copper welding(2021).

    [7] P F MCMANAMON, P S BANKS, J D BECK et al. Comparisonof flash lidar detector options. Optical Engineering, 56, 031223(2017).

    [8] H SODA, K IGA, C KITAHARA et al. GaInAsP/InP surface emitting injection lasers. Japanese Journal of Applied Physics, 18, 2329(1979).

    [9] K IGA. Forty years of vertical-cavity surface-emitting laser: invention and innovation. Japanese Journal of Applied Physics, 57, 08PA01(2018).

    [10] K IGA. Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1201-1215(2000).

    [11] Jiye ZHANG, Jianwei ZHANG, Zhuo ZHANG et al. High-power vertical external-cavity surface-emitting laser emitting switchable wavelengths. Optics Express, 28, 32612(2020).

    [12] Y LEE, J JEWELL, A SCHERER et al. Room temperature continuous wave vertical cavity surface emitting laser single quantum well micro laser diode. Electronics Letters, 25, 1377-1378(1989).

    [13] A LOTTJ, N LEDENTSOVN, M USTINOVV et al. InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm. Electronics Letters, 36, 1384-1385(2000).

    [14] T H OH, O B SHCHEKIN, D G DEPPE. Single-mode operation in an anti guided vertical-cavity surface-emitting laser using a low-temperature grown AlGaAs dielectric aperture. IEEE Photonics Technology Letters, 10, 1064-1066(1998).

    [15] T H OH, D L HUFFAKER, D G DEPPE. Comparison of vertical-cavity surface-emitting lasers with half-wave cavity spacers confined by single-or double-oxide apertures. IEEE Photonics Technology Letters, 9, 875-877(1997).

    [16] A HIGUCHI, H NAITO, K TORII et al. High power density vertical-cavity surface-emitting lasers with ion implanted isolated current aperture. Optics Express, 20, 4206-4212(2012).

    [17] G BOEHM, M ORTSIEFER, R SHAU et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm. Journal of Crystal Growth, 251, 748-753(2003).

    [18] H NAITO, M MIYAMOTO, Y AOKI et al. Development of a high-power vertical-cavity surface-emitting laser array with ion-implanted current apertures(2013).

    [19] M MULLER, W HOFMANN, G BOHM et al. Short-cavity long-wavelength VCSELs with modulation bandwidths in excess of 15 GHz. IEEE Photonics Technology Letters, 21, 1615-1617(2009).

    [20] J F SEURIN, C L GHOSH, V KHALFIN et al. High-power vertical-cavity surface-emitting arrays(2008).

    [21] J KITCHING, S KNAPPE, M VUKICEVIC et al. A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor. IEEE Transactions on Instrumentation and Measurement, 49, 1313-1317(2000).

    [22] D VEZ, S EITEL, S G HUNZIKER et al. 10-Gbit/s VCSELs for datacom: Devices and applications(2003).

    [23] A PRUIJMBOOM, R APETZ, R CONRADS et al. Vertical-cavity surface emitting laser-diodes arrays expanding the range of high-power laser systems and applications. Journal of Laser Applications, 28, 032005(2016).

    [24] R YADAV, P A ALVI. Temperature dependence of material gain of InGaAsP/InP nano-heterostructure, 1591, 1419-1421(2014).

    [25] M A LADUGIN, A A MARMALYUK. Effect of (Al) GaAs/AlGaAs quantum confinement region parameters on the threshold current density of laser diodes. Quantum Electronics, 49, 529(2019).

    [26] H WENZEL, P CRUMP, A PIETRZAK et al. The analysis of factors limiting the maximum output power of broad-area laser diodes. Optical and quantum electronics, 41, 645-652(2009).

    [27] D I BABIC, S W CORZINE. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 28, 514-524(1992).

    [28] J FAIST, F K REINHART. Phase modulation in GaAs/AlGaAs double heterostructures. I. Theory. Journal of Applied Physics, 67, 6998-7005(1990).

    [29] T KAUL, G ERBERT, A MAAßDORF et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs. Semiconductor Science and Technology, 33, 035005(2018).

    [30] J W BAE, G SHTENGEL, D KUKSENKOV et al. Threshold carrier density in vertical cavity surface emitting lasers. Applied Physics Letters, 66, 2031-2033(1995).

    [31] K D CHOQUETTE, R P SCHNEIDER, K L LEAR et al. Gain-dependent polarization properties of vertical-cavity lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1, 661-666(1995).

    [32] S A BLOKHIN, M A BOBROV, N A MALEEV et al. Impact of a large negative gain-to-cavity wavelength detuning on the performance of InGaAlAs oxide-confined vertical-cavity surface-emitting lasers(2015).

    [33] Jianwei ZHANG, Xing ZHANG, Hongbo ZHU et al. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks. Optics Express, 23, 14763-14773(2015).

    [34] N CYR, M TETU, M BRETON. All-optical microwave frequency standard: a proposal. IEEE Transactions on Instrumentation and Measurement, 42, 640-649(1993).

    [35] J KITCHING, S KNAPPE, L LIEW et al. Micro fabricated atomic clocks, 1-7(2005).

    [36] P D D SCHWINDT, S KNAPPE, V SHAH et al. Chip-scale atomic magnetometer. Applied Physics Letters, 85, 6409-6411(2004).

    [37] D K SERKLAND, K M GEIB, G M PEAKE et al. VCSELs for atomic sensors(2007).

    [38] N A MALEEV, S A BLOKHIN, M A BOBROV et al. Laser source for a compact nuclear magnetic resonance gyroscope. Gyroscopy and Navigation, 9, 177-182(2018).

    [39] Xing ZHANG, Yi ZHANG, Jianwei ZHANG et al. Application of 894 nm high temperature vertical cavity surface emitting laser and its chip-scale cesium atomic clock system. Acta Physica Sinica, 65, 134204(2016).

    [40] Runchang DU, lin YANG, Haiqing ZHAO. The current situation and development of chip atomic clocks. Navigation Positioning and Timing, 2, 34-38(2015).

    [41] Zhinan WU, Zhengqin ZHAO, Zhongpin WEN et al. Research progress of high-sensitivity miniature optical atomic magnetometer. Laser & Optoelectronics Progress, 57, 230002(2020).

    [42] PROUTYM . Advances in atomic magnetometers(2009).

    [43] T G WALKER, M S LARSEN. Spin-exchange pumped NMR gyros. Advances in Atomic, Molecular, and Optical Physics, 65, 373(2016).

    [44] A AL-SAMANEH. VCSELs for atomic clock demonstrators(2013).

    [45] P C CHUI, S F YU. Second harmonic distortion in vertical cavity surface emitting lasers with lateral loss effect. IEEE Journal of Selected Topics in Quantum Electronics, 5, 546-552(1999).

    [46] S F YU. Dynamic behavior of vertical cavity surface emitting lasers. IEEE Journal of Quantum Electronics, 32, 1168(1996).

    [47] C J CHANG-HASNAIN, J P HARBISON, G HASNAIN et al. Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE Journal of Quantum Electronics, 27, 1402(1991).

    [48] D K SERKLAND, G M PEAKE, K M GEIB et al. VCSELs for atomic clocks(2006).

    [49] A KEELERG, K M GEIB, D K SERKLAND et al. VCSEL polarization control for chip-scale atomic clocks(2007).

    [50] D K SERKLAND, T J MORIN, A J GRINE et al. All-semiconductor coupled-cavity VCSELs for narrow linewidth, 1-2(2018).

    [51] D K SERKLAND, T J MORIN, H M SO et al. Narrow-linewidth VCSELs based on multi-mirror cavities (Conference resentation), 11300, 1130008(2020).

    [52] D K SERKLAND, G A KEELER, K M GEIB et al. Narrow linewidth VCSELs for high-resolution spectroscopy(2009).

    [53] D WAHL, D SETZ, A AL-SAMANEH. Development of VCSELs for atomic clock applications. Annual Report, 49-54(2008).

    [54] A AL-SAMANEH, S RENZ, A STRODL et al. Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications, 7720, 772006(2010).

    [55] A AL-SAMANEH, M B SANAYEH, S RENZ et al. Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications. IEEE Photonics Technology Letters, 23, 1049-1051(2011).

    [56] A AL-SAMANEH, SANAYEH MBOU, M J MIAH et al. Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks. Applied Physics Letters, 101, 171104(2012).

    [57] F GRUET, A AL-SAMANEH, É KROEMER et al. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks. Optics Express, 21, 5781-5792(2013).

    [58] M J MIAH, A AL-SAMANEH, A KERN et al. Fabrication and characterization of low-threshold polarization-stable VCSELs for Cs-based miniaturized atomic clocks. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1701410(2013).

    [59] I A DEREBEZOV, V A HAISLER, A K BAKAROV et al. Single-mode vertical-cavity surface-emitting lasers for atomic clocks. Optoelectronics, Instrumentation and Data Processing, 45, 361-366(2009).

    [60] I A DEREBEZOV, V A HAISLER, A K BAKAROV et al. Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock. Semiconductors, 44, 1422-1426(2010).

    [61] S A BLOKHIN, M A BOBROV, A G KUZ’MENKOV et al. The influence of cavity design on the linewidth of near-IR single-mode vertical-cavity surface-emitting lasers. Technical Physics Letters, 44, 28-31(2018).

    [64] Jian ZHANG, Yongqiang NING, Yugang ZENG et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks. Laser Physics Letters, 10, 045802(2013).

    [65] Lei XIANG, Xing ZHANG, Jianwei ZHANG et al. Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing. Chinese Physics B, 26, 074209(2017).

    [66] Lei XIANG, Xing ZHANG, Jianwei ZHANG et al. VCSEL mode and polarization control by an elliptic dielectric mode filter. Applied Optics, 57, 8467-8471(2018).

    [67] Jiye ZHANG, Jianwei ZHANG, Xing ZHANG et al. Polarization-controlled and single-transverse-mode vertical-cavity surface-emitting lasers with eye-shaped oxide aperture. Japanese Journal of Applied Physics, 57, 120309(2018).

    [68] Jiye HANG, Jianwei ZHANG, Xing ZHANG et al. Asymmetric oxide apertures of vertical-cavity surface-emitting lasers fabricated by unsymmetrical wet oxidation and its polarization control. Optics & Laser Technology, 139, 106948(2021).

    [69] Xue LI, Yinli ZHOU, Xing ZHANG et al. High-power single-mode 894 nm VCSELs operating at high temperature (> 2 mW@ 365 K). Applied Physics B, 128, 1-6(2022).

    [71] Y R SUN, J R DONG, Y M ZHAO et al. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches. Optical and Quantum Electronics, 49, 1-11(2017).

    [72] Ming LI, Qiuhua WANG, Pingping QIU et al. 894nm high orthogonal polarization suppression ratio vertical cavity surface emitting laser, 11300, 113000W(2020).

    [73] Pingping QIU, Bo WU, Ming LI et al. Low threshold current single mode 894 nm VCSELs with SiO2/Si3N4 dielectric DBRs(2020).

    [74] Pingping QIU, Bo WU, Pan FU et al. Realization of single-transverse-mode VCSELs incorporating a built-in index guide. Optics Communications, 504, 127450(2022).

    [75] Fuling ZHANG, Lishan FU, Peili HU et al. Ultra-narrow linewidth characteristics of a 795 nm sub-wavelength grating coupling chamber vertical cavity surface emitting lasers. Acta Physica Sinica, 70, 113-119(2021).

    [76] O STEVENS. The history of datacom/DB. IEEE Annals of the History of Computing, 31, 87-91(2009).

    [77] B D NOTOHARDJONO, R R SCHMIDT, S M CANFIELD. Seismic considerations for datacom equipment, 112, 632(2006).

    [78] M DAYARATHNA, Y WEN, R FAN. Data center energy consumption modeling: A survey. IEEE Communications Surveys & Tutorials, 18, 732-794(2015).

    [79] CK LIN, P BOURD, J ZHU et al. High temperature continuous-wave operation of1.3-1.55um vcsels with inp/air-gap dbrs(2002).

    [80] N NISHIYAMA, A MIZUTANI, N HATORI et al. Single-transverse mode and stable-polarization operation under high-speed modulation of InGaAs-GaAs vertical-cavity surface-emitting laser grown on GaAs (311) B substrate. IEEE Photonics Technology Letters, 10, 1676-1678(1998).

    [81] J S HARRIS, T O'SULLIVAN, T SARMIENTO et al. Emerging applications for vertical cavity surface emitting lasers. Semiconductor Science and Technology, 26, 014010(2010).

    [82] A MUTIG, G FIOL, P MOSER et al. 120 C 20 Gbit/s operation of 980 nm single mode VCSEL(2008).

    [83] W HOFMANN, P MOSER, P WOLF et al. 44 Gb/s VCSEL for optical interconnects(2011).

    [84] L A GRAHAM, H CHEN, D GAZULA et al. The next generation of high speed VCSELs at Finisar, 8276, 827602(2012).

    [85] C XIE, N LIN, S HUANG et al. The next generation high data rate vcsel development at sedu(2013).

    [86] P WESTBERGH, R SAFAISINI, E HAGLUND et al. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85 ℃. IEEE Photonics Technology Letters, 25, 768-771(2013).

    [87] J W SHI, J C YAN, J M WUN et al. Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 Gbit/s operations. IEEE Journal of Selected Topics in Quantum Electronics, 19, 7900208(2012).

    [88] P MOSER, J A LOTT, P WOLF et al. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85 ℃. Electronics Letters, 50, 1369-1371(2014).

    [89] H LI, P WOLF, P MOSER et al. Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85 ℃. Electronics Letters, 50, 103-105(2014).

    [90] H LI, P WOLF, P MOSER et al. Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85 ℃ with 139-fJ/bit dissipated heat. IEEE Photonics Technology Letters, 26, 2349-2352(2014).

    [91] D M KUCHTA, A V RYLYAKOV, C L SCHOW et al. A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 ℃. Journal of Lightwave Technology, 33, 802-810(2015).

    [92] K L CHI, J L YEN, J M WUN et al. Strong wavelength detuning of 850 nm vertical-cavity surface-emitting lasers for high-speed (> 40 Gbit/s) and low-energy consumption operation. IEEE Journal of Selected Topics in Quantum Electronics, 21, 470-479(2015).

    [93] M LIU, C Y WANG, M FENG et al. 850 nm oxide-confined vcsels with 50 gb/s error-free transmission operating up to 85 ℃(2016).

    [94] G LARISCH, P MOSER, J A LOTT et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs. IEEE Photonics Technology Letters, 28, 2327-2330(2016).

    [95] E SIMPANEN, J S GUSTAVSSON, E HAGLUND et al. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate. Electronics Letters, 53, 869-871(2017).

    [96] M AGUSTÍN, J R KROPP, V A SHCHUKIN et al. Temperature stable oxide-confined 850-nm VCSELs operating at bit rates up to 25 Gbit/s at 150 ℃(2018).

    [97] N LEDENTSOV, L CHORCHOS, O MAKAROV et al. Quantum-dot oxide-confined 850-nm VCSELs with extreme temperature stability operating at 25 Gbit/s up to 180 ℃(2020).

    Jianwei ZHANG, Yongqiang NING, Xing ZHANG, Yinli ZHOU, Chao CHEN, Hao WU, Li QIN, Lijun WANG. Development and Future of Vertical Cavity Surface Emitting Lasers Operated at High Temperatures(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201
    Download Citation