• Advanced Photonics
  • Vol. 5, Issue 2, 026004 (2023)
Minwoo Jung1、* and Gennady Shvets2、*
Author Affiliations
  • 1Cornell University, Department of Physics, Ithaca, New York, United States
  • 2Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
  • show less
    DOI: 10.1117/1.AP.5.2.026004 Cite this Article Set citation alerts
    Minwoo Jung, Gennady Shvets. Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices[J]. Advanced Photonics, 2023, 5(2): 026004 Copy Citation Text show less
    References

    [1] A. Woessner et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater., 14, 421(2015).

    [2] P. Alonso-Gonzalez et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol., 12, 31-35(2017).

    [3] M. Sidler et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys., 13, 255-261(2017).

    [4] O. Koksal et al. Structure and dispersion of exciton–trion-polaritons in two-dimensional materials: experiments and theory. Phys. Rev. Res., 3, 033064(2021).

    [5] G. X. Ni et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics, 10, 244-247(2016).

    [6] L. B. Tan et al. Interacting polaron-polaritons. Phys. Rev. X, 10, 021011(2020).

    [7] A. J. Sternbach et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science, 371, 617-620(2020).

    [8] F. Rana et al. Exciton–trion polaritons in doped two-dimensional semiconductors. Phys. Rev. Lett., 126, 127402(2021).

    [9] A. Woessner et al. Electrical 2n phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photonics, 11, 421-424(2017).

    [10] Z. Fan et al. Electrically defined topological interface states of graphene surface plasmons based on a gate-tunable quantum Bragg grating. Nanophotonics, 8, 1417-1431(2019).

    [11] L. Xiong et al. Programmable Bloch polaritons in graphene. Sci. Adv., 7, eabe8087(2021).

    [12] T. Fang et al. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett., 91, 092109(2007).

    [13] G. L. Yu et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl. Acad. Sci. U. S. A., 110, 3282(2013).

    [14] V. Di Giulio, P. A. D. Gonçalves, F. J. G. de Abajo. An image interaction approach to quantum-phase engineering of two-dimensional materials. Nat. Commun., 13, 5175(2022).

    [15] C.-H. Park et al. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys., 4, 213-217(2008).

    [16] C.-H. Park et al. Landau levels and quantum Hall effect in graphene superlattices. Phys. Rev. Lett., 103, 046808(2009).

    [17] L. Brey, H. A. Fertig. Emerging zero modes for graphene in a periodic potential. Phys. Rev. Lett., 103, 046809(2009).

    [18] C. Forsythe et al. Band structure engineering of 2D materials using patterned dielectric superlattices. Nat. Nanotechnol., 13, 566-571(2018).

    [19] Y. Li et al. Anisotropic band flattening in graphene with one-dimensional superlattices. Nat. Nanotechnol., 16, 525-530(2021).

    [20] L. Brey et al. Nonlocal quantum effects in plasmons of graphene superlattices. Phys. Rev. Lett., 124, 257401(2020).

    [21] M. Jung, Z. Fan, G. Shvets. Midinfrared plasmonic valleytronics in metagate-tuned graphene. Phys. Rev. Lett., 121, 086807(2018).

    [22] M. I. Katsnelson, K. S. Novoselov, A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys., 2, 620-625(2006).

    [23] A. F. Young, P. Kim. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys., 5, 222-226(2009).

    [24] L. Wang et al. One-dimensional electrical contact to a two-dimensional material. Science, 342, 614-617(2013).

    [25] M. R. Ramezanali et al. Finite-temperature screening and the specific heat of doped graphene sheets. J. Phys. A: Math. Theor., 42, 214015(2009).

    [26] X. Luo et al. Plasmons in graphene: recent progress and applications. Mater. Sci. Eng. R Rep., 74, 351-376(2013).

    [27] G. X. Ni et al. Fundamental limits to graphene plasmonics. Nature, 577, 530-533(2018).

    [28] M. B. Lundeberg et al. Tuning quantum nonlocal effects in graphene plasmonics. Science, 357, 187-191(2017).

    [29] I. Torre et al. Lippmann-Schwinger theory for two-dimensional plasmon scattering. Phys. Rev. B, 96, 035433(2017).

    [30] L. Xiong et al. Photonic crystal for graphene plasmons. Nat. Commun., 10, 4780(2019).

    [31] Y. Kurman, I. Kaminer. Tunable bandgap renormalization by nonlocal ultra-strong coupling in nanophotonics. Nat. Phys., 16, 868-874(2020).

    [32] O. Kyriienko, I. A. Shelykh. Intersubband polaritonics revisited. J. Nanophotonics, 6, 061804(2012).

    [33] S. Zanotto et al. Intersubband polaritons in a one-dimensional surface plasmon photonic crystal. Appl. Phys. Lett., 97, 231123(2010).

    [34] V. A. Kulbachinskii et al. Electron effective masses in an InGaAs quantum well with InAs and GaAs inserts. Semicond. Sci. Technol., 27, 035021(2012).

    [35] A. A. Anappara et al. Signatures of the ultrastrong light-matter coupling regime. Phys. Rev. B, 79, 201303(2009).

    [36] J. Lee et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511, 65-69(2014).

    [37] L. Kun Shi, J. Ma, J. C. W. Song. Gate-tunable flat bands in van der Waals patterned dielectric superlattices. 2D Mater., 7, 015028(2019).

    [38] K. Tran et al. Evidence for Moiré excitons in van der Waals heterostructures. Nature, 567, 71-75(2019).

    [39] H. Agarwal et al. 2D-3D integration of hexagonal boron nitride and a high-dielectric for ultrafast graphene-based electro-absorption modulators. Nat. Commun., 12, 1070(2021).

    [40] M. Jung, R. G. Gladstone, G. Shvets. Nanopolaritonic second-order topological insulator based on graphene plasmons. Adv. Photonics, 2, 046003(2020).

    Minwoo Jung, Gennady Shvets. Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices[J]. Advanced Photonics, 2023, 5(2): 026004
    Download Citation