• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 9, 2670 (2021)
Ming LI1、1; 2;, Long NI1、1;, Meng WANG1、1; 2; *;, Zhong-xu ZHU1、1;, Chuan-jun YUAN1、1; 2;, and Jian WU3、3; *;
Author Affiliations
  • 11. College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang 110035, China
  • 33. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)09-2670-11 Cite this Article
    Ming LI, Long NI, Meng WANG, Zhong-xu ZHU, Chuan-jun YUAN, Jian WU. Research Progress on Evaluating the Effects of Nanomaterial-Based Development of Latent Fingerprints[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2670 Copy Citation Text show less
    Image of latent fingerprint deposited on white tile and developed by magnetic powders (a); and gray curves corresponding to developed fingerprint and its substrate characterized by Image J software (b)[20]
    Fig. 1. Image of latent fingerprint deposited on white tile and developed by magnetic powders (a); and gray curves corresponding to developed fingerprint and its substrate characterized by Image J software (b)[20]
    Scheme for quantifying the contrast of fingerprints developed with fluorescent nanomaterials by means of spectral analysis[15]
    Fig. 2. Scheme for quantifying the contrast of fingerprints developed with fluorescent nanomaterials by means of spectral analysis[15]
    Images of latent fingerprints deposited on various substrates and developed by different powders(a): Bronze powders[20]; (b), (e): Magnetic powders[20]; (c), (f), (g): YVO4:Eu downconversion luminescent nanopowders[15]; (d): LaPO4:Ce, Tb downconversion luminescent nanopowders[15]; (h): Green fluorescent powders[21]; (i): NaYF4:Yb, Er upconversion luminescent nanopowders[21]
    Fig. 3. Images of latent fingerprints deposited on various substrates and developed by different powders
    (a): Bronze powders[20]; (b), (e): Magnetic powders[20]; (c), (f), (g): YVO4:Eu downconversion luminescent nanopowders[15]; (d): LaPO4:Ce, Tb downconversion luminescent nanopowders[15]; (h): Green fluorescent powders[21]; (i): NaYF4:Yb, Er upconversion luminescent nanopowders[21]
    Images of latent fingerprint deposited on marble and developed by rare earth nanocomplex suspensions (a), and corresponding magnified images (b)—(d): scar (b1), wrinkle (b2), spur (c1), termination (c2), bifurcation (c3, c4), and sweat pore (d)[22]
    Fig. 4. Images of latent fingerprint deposited on marble and developed by rare earth nanocomplex suspensions (a), and corresponding magnified images (b)—(d): scar (b1), wrinkle (b2), spur (c1), termination (c2), bifurcation (c3, c4), and sweat pore (d)[22]
    Images of latent fingerprints deposited on glass and developed by various powders(a): Bronze powders; (b): NaYF4:Yb, Er upconversion luminescent powders with particle size of nanoscale; (c): Microscale[28];(a')—(c') are scanning electron microscope images of the developing powders corresponding to (a)—(c)[4, 28]
    Fig. 5. Images of latent fingerprints deposited on glass and developed by various powders
    (a): Bronze powders; (b): NaYF4:Yb, Er upconversion luminescent powders with particle size of nanoscale; (c): Microscale[28];(a')—(c') are scanning electron microscope images of the developing powders corresponding to (a)—(c)[4, 28]
    (a) Image of latent fingerprint deposited on black tile and developed by super glue fuming method; (b) gray analysis corresponding to papillate ridges and furrows characterized by Image J software[75]
    Fig. 6. (a) Image of latent fingerprint deposited on black tile and developed by super glue fuming method; (b) gray analysis corresponding to papillate ridges and furrows characterized by Image J software[75]
    Images of latent fingerprints deposited on glass and developed by different powders(a): LaPO4:Ce, Tb downconversion luminescent nanopowders; (b): Green fluorescent powders[9]
    Fig. 7. Images of latent fingerprints deposited on glass and developed by different powders
    (a): LaPO4:Ce, Tb downconversion luminescent nanopowders; (b): Green fluorescent powders[9]
    Strategies for enhancing the selectivity of latent fingerprint development and images of corresponding fingerprints(a): Antibody combination[77]; (a'): Aptamer recognition[79]; (b): Electrostatic adsorption[78];(c): Chemical bonding[22]; (d): Hydrophobic effect[29]
    Fig. 8. Strategies for enhancing the selectivity of latent fingerprint development and images of corresponding fingerprints
    (a): Antibody combination[77]; (a'): Aptamer recognition[79]; (b): Electrostatic adsorption[78];(c): Chemical bonding[22]; (d): Hydrophobic effect[29]
    Images of latent fingerprint deposited on glass and developed by LaPO4:Ce, Tb downconversion luminescent nanopowders in bright field (a), and dark filed excited with 254 nm ultraviolet light (b); and corresponding STR fluorescent spectrum for touch DNA detection in developed fingerprint residuals (c)
    Fig. 9. Images of latent fingerprint deposited on glass and developed by LaPO4:Ce, Tb downconversion luminescent nanopowders in bright field (a), and dark filed excited with 254 nm ultraviolet light (b); and corresponding STR fluorescent spectrum for touch DNA detection in developed fingerprint residuals (c)
    Scheme for fingerprint development and enhancement via electrodeposition of electrochromic Co3O4 films and subsequent touch DNA detection[84]
    Fig. 10. Scheme for fingerprint development and enhancement via electrodeposition of electrochromic Co3O4 films and subsequent touch DNA detection[84]
    年份纳米显现材料灵敏度表征文献年份纳米显现材料灵敏度表征文献
    总体细节汗孔总体细节汗孔
    2012TPE(a)[23]2018LaOF:Sm[49]
    2014CdSe[24]2018Cu7S4[50]
    2014Au[25]2018BaTiO3:Nd[51]
    2014HPS & MCSTPS(b)[26]2018SiO2@ZnAl2O4:Eu[52]
    2015YVO4:Eu & LaPO4: Ce, Tb[27]2018CaZrO3:Eu[53]
    2015NaYF4:Yb, Er[28]2018Ca2SiO4:Dy[54]
    2015NaYF4:Yb, Er[21]2018Gd2Ti2O7:Eu[55]
    2016NaYF4:Yb, Er[29]2018BaTiO3:Eu[56]
    2016NaYF4:Yb, Ge, Er[30]2018La2Ti2O7:Eu[57]
    2016DPPS derivative(c)[31]2018SiO2@LaOF:Eu[58]
    2017CdTe[32]2018BaTiO3:Eu@SiO2[59]
    2017CeO2[33]2018SiO2@SrTiO3:Eu, Li[60]
    2017ZrO2:Dy[34]2018CDs(e)[61]
    2017ZrO2/CuO[35]2018SiO2@CDs[62]
    2017CdSiO3:Eu & CdSiO3:Tb[36]2018CDs@TiO2[63]
    2017CdSiO3:Dy[37]2018DPPS derivative[64]
    2017La2(MoO4)3:Eu[38]2018Acridinedione derivative[65]
    2017LaVO4:Eu & LaVO4:Dy[39]2018Ir(Ⅲ) complex[66]
    2017Zn2GeO4:Ga, Mn[40]2019Cu[67]
    2017Y4Zr3O12:Eu[41]2019Fe3O4@SiO2/CdTe[68]
    2017TPE derivative[42]2019SiO2@SrTiO3:Dy[69]
    2018Au/MMT(d)[43]2019GdAlO3:Ce[70]
    2018Y2O3:Eu[44]2019YVO4:Bi, Eu[71]
    2018CeO2:Eu[45]2019BaTiO3:Eu[72]
    2018TiO2:Ce[46]2019CDs:P[73]
    2018TiO2:Eu[47]2020NaYbF4:Tm[74]
    2018MoO3[48]2021Eu(PTA)3Phen(f)[22]
    Table 1. Summary of sensitivity research in latent fingerprint development
    年份纳米显现材料选择性表征文献年份纳米显现材料选择性表征文献
    定性定量定性定量
    2014Au[25]2018La2Ti2O7:Eu[57]
    2017CaS:Eu, Sm, Mn[76]2018Gd2Ti2O7:Eu[55]
    2017Zn2GeO4: Ga, Mn[40]2019GdAlO3:Ce[70]
    2017Y4Zr3O12:Eu[41]2019BaTiO3:Eu[72]
    2018TiO2:Eu[47]2020NaYbF4:Tm[74]
    2018CaZrO3:Eu[53]2021Eu(PTA)3Phen(a)[22]
    Table 2. Summary of selectivity research in latent fingerprint development
    Ming LI, Long NI, Meng WANG, Zhong-xu ZHU, Chuan-jun YUAN, Jian WU. Research Progress on Evaluating the Effects of Nanomaterial-Based Development of Latent Fingerprints[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2670
    Download Citation