• Laser & Optoelectronics Progress
  • Vol. 57, Issue 18, 180002 (2020)
Ying Liu1、2、3, Yaliang Yang1、2、*, and Xian Yue1、2、3
Author Affiliations
  • 1Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.180002 Cite this Article Set citation alerts
    Ying Liu, Yaliang Yang, Xian Yue. Optical Coherence Tomography Angiography and Its Applications in Ophthalmology[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180002 Copy Citation Text show less
    References

    [1] Chen Z, Milner T E, Srinivas S et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography[J]. Optics Letters, 22, 1119-1121(1997).

    [2] Ding Z H, Zhao C, Bao W et al. Advances in Doppler optical coherence tomography[J]. Laser & Optoelectronics Progress, 50, 080005(2013).

    [3] Leitgeb R, Schmetterer L, Drexler W et al. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography[J]. Optics Express, 11, 3116-3121(2003).

    [4] Drexler W, Fujimoto J G[M]. Retinal optical coherence tomography imaging, 1685-1735(2015).

    [5] Barton J, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 13, 5234-5239(2005).

    [6] An L, Wang R K. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography[J]. Optics Express, 16, 11438-11452(2008).

    [7] Ding Z H, Zhao Y H, Ren H W et al. Real-time phase-resolved optical coherence tomography and optical Doppler tomography[J]. Optics Express, 10, 236-245(2002).

    [8] Spaide R F, Klancnik J M, Cooney M J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmology, 133, 45-50(2015).

    [9] Davé D P, Milner T E. Doppler-angle measurement in highly scattering media[J]. Optics Letters, 25, 1523-1525(2000).

    [10] Pedersen C J, Huang D, Shure M A et al. Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography[J]. Optics Letters, 32, 506-508(2007).

    [11] Dai C X, Liu X J, Zhang H F et al. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography[J]. Investigative Opthalmology & Visual Science, 54, 7998-8003(2013).

    [12] Fingler J, Zawadzki R J, Werner J S et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 17, 22190-22200(2009).

    [13] Fingler J, Readhead C, Schwartz D M et al. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid[J]. Investigative Ophthalmology & Visual Science, 49, 5055-5059(2008).

    [14] Fingler J, Schwartz D, Yang C et al. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography[J]. Optics Express, 15, 12636-12653(2007).

    [15] Kim D Y, Fingler J, Werner J S et al. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography[J]. Biomedical Optics Express, 2, 1504-1513(2011).

    [16] Chen J B, Zeng Y G, Yuan Z L et al. Optical coherence tomography based on dynamic speckle[J]. Acta Optica Sinica, 38, 0111001(2018).

    [17] Mariampillai A, Standish B A, Moriyama E H et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 33, 1530-1532(2008).

    [18] Mariampillai A. Leung M K K, Jarvi M, et al. Optimized speckle variance OCT imaging of microvasculature[J]. Optics Letters, 35, 1257-1259(2010).

    [19] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2, 1184-1193(2011).

    [20] Jonathan E, Enfield J, Leahy M J. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images[J]. Journal of Biophotonics, 4, 583-587(2011).

    [21] McNamara P M, Subhash H M, Leahy M J. In vivo full-field en face correlation mapping optical coherence tomography[J]. Journal of Biomedical Optics, 18, 126008(2013).

    [22] Dalimier E, Salomon D. Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging[J]. Dermatology (Basel, Switzerland), 224, 84-92(2012).

    [23] Jia Y L, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012).

    [24] Gao S S, Liu G J, Huang D et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Optics Letters, 40, 2305-2308(2015).

    [25] Liu Z P, Wang H, Jiang H et al. Quantitative analysis of conjunctival microvasculature imaged using optical coherence tomography angiography[J]. Eye and Vision, 6, 1-9(2019).

    [26] Sweeney A R, Zhang Q Q, Wang R K et al. Optical coherence tomography microangiography imaging of circumscribed choroidal hemangioma[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 49, 134-137(2018).

    [27] Zhi Z W, Cepurna W O, Johnson E C et al. Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography[J]. Biomedical Optics Express, 3, 2220-2233(2012).

    [28] Zhi Z W, Qin W, Wang J G et al. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source[J]. Optics Letters, 40, 1779-1782(2015).

    [29] Gao F, Fan J Y, Kong W et al. Research progress on optical coherence tomography in detecting vascular flow field[J]. Chinese Journal of Lasers, 45, 0207019(2018).

    [30] Liu G J, Jia Y L, Pechauer A D et al. Split-spectrum phase-gradient optical coherence tomography angiography[J]. Biomedical Optics Express, 7, 2943-2954(2016).

    [31] Zhang A Q, Zhang Q Q, Chen C L et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 20, 100901(2015).

    [32] Gorczynska I, Migacz J V, Zawadzki R J et al. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid[J]. Biomedical Optics Express, 7, 911-942(2016).

    [33] Chalam K V, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. Journal of Ophthalmic & Vision Research, 11, 84-92(1900).

    [34] de Carlo T E, Bonini Filho M A, Baumal C R et al. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 47, 115-119(2016).

    [35] Sandhu H S, Eladawi N, Elmogy M et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study[J]. The British Journal of Ophthalmology, 102, 1564-1569(2018).

    [36] de Carlo T E, Chin A T, Bonini Filho M A et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 35, 2364-2370(2015).

    [37] Freiberg F J, Pfau M, Wons J et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 254, 1051-1058(2016).

    [38] Wang L W, Cui L, Zou J X et al. Application value of OCTA examination in diagnosis and treatment of retinal vein occlusion[J]. International Eye Science, 19, 1361-1364(2019).

    [39] Zeng M, Chen X, Song Y P et al. Consistency analysis of optical coherence tomography angiography and fundus fluorescein angiography in the diagnosis of central retinal vein occlusion[J]. Chinese Journal of Ocular Fundus Diseases, 32, 362-366(2016).

    [40] de Castro-Abeger A H, de Carlo T E, Duker J S et al. Optical coherence tomography angiography compared to fluorescein angiography in branch retinal artery occlusion[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 46, 1052-1054(1900).

    [41] Wu S C, Villegas V M, Kovach J L. Optical coherence tomography angiography of combined central retinal artery and vein occlusion[J]. Case Reports in Ophthalmological Medicine, 2018, 4342158(2018).

    [42] Yu S S, Lu J, Cao D et al. The role of optical coherence tomography angiography in fundus vascular abnormalities[J]. BMC Ophthalmology, 16, 1-7(2016).

    [43] Loo J, Fang L Y, Cunefare D et al. Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2[J]. Biomedical Optics Express, 9, 2681-2698(2018).

    [44] Toto L, Di Antonio L, Mastropasqua R et al. Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 57, 268-276(2016).

    [45] Dogan B, Erol M K, Akidan M et al. Retinal vascular density evaluated by optical coherence tomography angiography in macular telangiectasia type 2[J]. International Ophthalmology, 39, 2245-2256(2019).

    [46] Kumar V, Kumawat D, Kumar P. Swept source optical coherence tomography analysis of choroidal thickness in macular telangiectasia type 2: a case-control study[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 257, 567-573(2019).

    [47] Villegas V M, Kovach J L. Optical coherence tomography angiography of macular telangiectasia type 2 with associated subretinal neovascular membrane[J]. Case Reports in Ophthalmological Medicine, 2017, 8186134(2017).

    [48] Jia Y L, Bailey S T, Wilson D J et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 121, 1435-1444(2014).

    [49] Ma J, Desai R, Nesper P et al. Optical coherence tomographic angiography imaging in age-related macular degeneration[J]. Ophthalmology and Eye Diseases, 9, 1179172116686075(2017).

    [50] Ratnapriya R, Chew E Y. Age-related macular degeneration-clinical review and genetics update[J]. Clinical Genetics, 84, 160-166(2013).

    [51] Nassisi M, Shi Y, Fan W Y et al. Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study[J]. The British Journal of Ophthalmology, 103, 911-917(2019).

    [52] Yannuzzi L A, Rohrer K T, Tindel L J et al. Fluorescein angiography complication survey[J]. Ophthalmology, 93, 611-617(1986).

    [53] de Carlo T E, Salz D A, Waheed N K et al. Visualization of the retinal vasculature using wide-field montage optical coherence tomography angiography[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 46, 611-616(2015).

    [54] Gao S S, Jia Y L, Zhang M et al. Optical coherence tomography angiography[J]. Investigative Opthalmology & Visual Science, 57, 27-36(2016).

    [55] Mastropasqua R, Toto L, Mastropasqua A et al. Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography[J]. International Journal of Ophthalmology, 10, 1545-1551(2017).

    [56] Abouei E. Lee A M D, Pahlevaninezhad H, et al. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration[J]. Journal of Biomedical Optics, 23, 1-13(2018).

    [57] Chen Y W, Hong Y J, Makita S et al. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning[J]. Biomedical Optics Express, 9, 1111-1129(2018).

    [58] Chen F K, Viljoen R D, Bukowska D M. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases[J]. Clinical & Experimental Ophthalmology, 44, 388-399(2016).

    [59] Laslandes M, Salas M, Hitzenberger C K et al. Influence of wave-front sampling in adaptive optics retinal imaging[J]. Biomedical Optics Express, 8, 1083-1100(2017).

    [60] Wells-Gray E M M, Choi S S, Zawadzki R J et al. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope[J]. Journal of Biomedical Optics, 23(2018).

    [61] Pedersen H R, Gilson S J, Dubra A et al. Multimodal imaging of small hard retinal drusen in young healthy adults[J]. The British Journal of Ophthalmology, 102, 146-152(2018).

    [62] Zang P X, Liu G J, Zhang M et al. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram[J]. Biomedical Optics Express, 7, 2823-2836(2016).

    [63] Camino A, Zhang M, Gao S S et al. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology[J]. Biomedical optics express, 7, 3905-3915(2016).

    Ying Liu, Yaliang Yang, Xian Yue. Optical Coherence Tomography Angiography and Its Applications in Ophthalmology[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180002
    Download Citation