• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220291 (2022)
Yanlan Xiao, Yanping Yang, Zhengyuxiao Yang, Jiahao Hu, Danni Jin, Yong Geng, and Heng Zhou
Author Affiliations
  • Key Lab of Optical Fiber Sensing and Communication Networks, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.3788/IRLA20220291 Cite this Article
    Yanlan Xiao, Yanping Yang, Zhengyuxiao Yang, Jiahao Hu, Danni Jin, Yong Geng, Heng Zhou. Chip-scale Kerr optical frequency comb for wavelength-division multiplexing optical fiber communications (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220291 Copy Citation Text show less
    References

    [1] John S, Leonid K. Optical fiber communications: Principles practice[JOL]. Phys Today, 1987. https:doi.g10.10631.2820238.

    [2] K Kikuchi. Fundamentals of coherent optical fiber communications. Journal of Lightwave Technology, 34, 157-179(2016).

    [3] X Liu, S Chandrasekhar, P J Winzer. Digital signal processing techniques enabling multi-Tb/s superchannel transmission: An overview of recent advances in DSP-enabled superchannels. IEEE Signal Processing Magazine, 31, 16-24(2014).

    [4] B Pillai, B Sedighi, K Guan, et al. End-to-end energy modeling and analysis of long-haul coherent transmission systems. Journal of Lightwave Technology, 32, 3093-3111(2014).

    [5] T W Hänsch. Passion for precision (Nobel lecture). Chemphyschem, 7, 1170-1187(2010).

    [6] P Del’Haye, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [7] J Pfeifle, V Brasch, M Lauermann, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 8, 375-380(2014).

    [8] T Herr, V Brasch, J D Jost, et al. Temporal solitons in optical microresonators. Nature Photon, 8, 145-152(2014).

    [9] P Marin-Palomo, J N Kemal, M Karpov, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [10] B Shen, L Chang, J Liu, et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [11] A Kovach, D Chen, J He, et al. Emerging material systems for integrated optical Kerr frequency combs. Advances in Optics and Photonics, 12, 135-222(2020).

    [12] C Xiang, J Liu, J Guo, et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [13] F Lei, Z Ye, A Fülp, et al. Fundamental optical linewidth of soliton microcombs. arXiv Preprint arXiv, 2102.05517v1(2021).

    [14] W Weng, E Lucas, G Lihachev, et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Physical Review Letters, 122, 013902(2019).

    [15] J Liu, E Lucas, A S Raja, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photonics, 14, 486-491(2020).

    [16] X Yi, Q F Yang, X Zhang, et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat Commun, 8, 14869(2017).

    [17] S B Helgason, M Girardi, Z Ye, et al. Power-efficient soliton microcombs. arXiv, 2202. 09410(2022).

    [18] Y Liu, Z Qiu, X Ji, et al. A photonic integrated circuit based erbium-doped amplifier. arXiv Preprint arXiv, 2204.02202(2022).

    [19] X Xue, X Zheng, B Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat Photonics, 13, 616-622(2019).

    [20] W Wang, H Liu, J Yang, et al. Mapping ultrafast timing jitter in dispersion-managed 89 GHz frequency microcombs via self-heterodyne linear interferometry. arXiv, 2108.01177(2021).

    [21] Y Geng, H Zhou, W Cui, et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nature Communications, 13, 1070(2022).

    [22] D Villafani, A Mirani, X Pang, et al. Phase noise characterization and EEPN of a full C-band tunable laser in coherent optical systems. IEEE Photonics Technology Letters, PP, 1-1(2019).

    [23] E Temprana, E Myslivets, P P Kuo, et al. Overcoming Kerr-induced capacity limit in optical fiber transmission. Science, 348, 1445-1448(2015).

    [24] J K Perin, A Shastri, J M Kahn. Design of low-power DSP-free coherent receivers for data center links. Journal of Lightwave Technology, 35, 4650-4662(2017).

    [25] Gui T, Du H, Zheng K, et al. Real time 6.4 Tbps (8×800 G) SHCD transmission through 1+8 multice fiber f copackaged opticalIO switch applications [C]2022 Optical Fiber Communications Conference Exhibition (OFC), 2022: 13.

    Yanlan Xiao, Yanping Yang, Zhengyuxiao Yang, Jiahao Hu, Danni Jin, Yong Geng, Heng Zhou. Chip-scale Kerr optical frequency comb for wavelength-division multiplexing optical fiber communications (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220291
    Download Citation