• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 4, 2250023 (2022)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, and [in Chinese]1、*
Author Affiliations
  • 1School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
  • 2Biomedical Engineering Lab, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan
  • show less
    DOI: 10.1142/s1793545822500237 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High-speed all-optic optical coherence tomography and photoacoustic microscopy dual-modal system for microcirculation evaluation[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2250023 Copy Citation Text show less
    References

    [1] Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, R. K. Wang, "In vivo optical imaging of revascularization after brain trauma in mice," Microvasc. Res. 81, 73–80 (2011), doi: 10.1016/j.mvr.2010.11.003.

    [2] K. M. Poole, D. R. McCormack, C. A. Patil, C. L. Duvall, M. C. Skala, "Quantifying the vascular response to ischemia with speckle variance optical coherence tomography," Biomed. Opt. Exp. 5, 4118 (2014), doi: 10.1364/boe.5.004118.

    [3] C. A. Park, C. K. Kang, Y. B. Kim, Z. H. Cho, "Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography," Neuroimage 168, 269–278 (2018), doi: 10.1016/j.neuroimage.2017.01.019.

    [4] D. W. Wei, A. J. Deegan, R. K. Wang, "Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration," J. Biomed.Opt. 22, 066013 (2017), doi: 10.1117/1.jbo.22.6.066013.

    [5] K. Maslov, H. F. Zhang, S. Hu, L. V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Opt. Lett. 33, 929(2008), doi: 10.1364/ol.33.000929.

    [6] K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, F. Molinari, "Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging," Phys. Med. Biol. 61, 7994–8009 (2016), doi: 10.1088/0031-9155/61/22/7994.

    [7] Z. Ma, S. Luo, M. Yu, J. Liu, Y. Zhao, Y. Yu, J. Lv, X. Zhang, Y. Wang, "Assessment of microvasculature flow state with a high speed all-optic dualmodal system of optical coherence tomography and photoacoustic imaging," Biomed. Opt. Exp. 9, 6103 (2018), doi: 10.1364/boe.9.006103.

    [8] Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, M. Liu, "Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging," Sci. Rep. 7, 1–11 (2017), doi: 10.1038/s41598-017-18331-9.

    [9] J. Eom, J. G. Shin, S. Park, S. Rim, B. H. Lee, "An all-fiber-optic combined system of noncontact photoacoustic tomography and optical coherence tomography," Sensors (Switzerland) 16, 1–11 (2016), doi: 10.3390/s16050734.

    [10] M. Liu, B. Maurer, B. Hermann, B. Zabihian, M. G. Sandrian, A. Unterhuber, B. Baumann, E. Z. Zhang, P. C. Beard, W. J. Weninger, W. Drexler, "Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages," Biomed. Opt. Exp. 5, 3150 (2014), doi: 10.1364/boe.5.003150.

    [11] L. Li, K. Maslov, G. Ku, L. V. Wang, "Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies," Opt. Exp. 17, 16450 (2009), doi: 10.1364/oe.17.016450.

    [12] C. Lee, S. Han, S. Kim, M. Jeon, M. Y. Jeon, C. Kim, J. Kim, "Combined photoacoustic and optical coherence tomography using a single nearinfrared supercontinuum laser source," Appl. Opt. 52, 1824–1828 (2013), doi: 10.1364/AO.52.001824.

    [13] M. Jeon, C. Kim, "Multimodal photoacoustic tomography," Multimedia IEEE Trans. 15, 975–982 (2013), doi: 10.1109/TMM.2013.2244203.

    [14] S. Carp, V. Venugopalan, "Optoacoustic imaging based on the interferometric measurement of surface displacement," J. Biomed. Opt. 12, 64001 (2007), doi: 10.1117/1.2812665.

    [15] A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, T. Berer, "Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification," Biomed. Opt. Exp. 4, 2322–2331 (2013), doi: 10.1364/BOE.4.002322.

    [16] S. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, "Optoacoustic imaging using interferometric measurement of surface displacement," Appl. Phys. Lett. 85, 5772–5774 (2004), doi: 10.1063/1.1831569.

    [17] G. Rousseau, A. Blouin, J.-P. Monchalin, "Noncontact photoacoustic tomography and ultrasonography for tissue imaging," Biomed. Opt. Exp. 3, 16(2012), doi: 10.1364/boe.3.000016.

    [18] E. Zhang, J. Laufer, P. Beard, "Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues," Appl. Opt. 47, 561 (2008), doi:10.1364/ao.47.000561.

    [19] M. Liu, Z. Chen, B. Zabihian, C. Sinz, E. Zhang, P. C. Beard, L. Ginner, E. Hoover, M. P. Minneman, R. Leitgeb, H. Kittler, W. Drexler, "Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging," Biomed. Opt. Exp. 7, 3390–3402 (2016), doi: 10.1364/BOE.7.003390.

    [20] S. Park, J. Eom, Y. Ho Kim, C. Lee, B. H. Lee, "Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer," Opt. Lett. 39, 4903–4906 (2014), doi: 10.1364/OL.39.004903.

    [21] J. Eom, S. J. Park, B. H. Lee, "Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry," J. Biomed. Opt. 20, 106007 (2015), doi: 10.1117/1.jbo.20.10.106007.

    [22] Y. Wang, C. Li, R. K. Wang, "Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector," Opt. Lett. 36, 3975–3977 (2011), doi: 10.1364/OL.36.003975.

    [23] J. Lu, Y. Gao, Z. Ma, H. Zhou, R. Wang, Y. Wang, "In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering," J. Biomed. Opt. 22, 36002 (2017), doi: 10.1117/1.JBO.22.3.036002.

    [24] J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, Z. Ma, "Optimized depthresolved estimation to measure optical attenuation coe±cients from optical coherence tomography and its application in cerebral damage determination," J. Biomed. Opt. 24, 1 (2019), doi: 10.1117/1.jbo.24.3.035002.

    [25] J. Liu, M. Yushu, S. Dou, Y. Wang, D. La, J. Liu, Z. Ma, "Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography," J. Biomed. Opt. 21, 75014 (2016), doi: 10.1117/1.JBO.21.7.075014.

    [26] R. Sun, M. B. Bouchard, E. M. C. Hillman, "SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition," Biomed. Opt. Exp. 1, 385 (2010), doi: 10.1364/boe.1.000385.

    [27] K. Zhang, J. U. Kang, "Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT," Opt. Exp. 18, 23472 (2010), doi: 10.1364/oe.18.023472.

    [28] X. Xu, H. Liu, L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photon. 5(3), 154 (2011), doi: 10.1038/nphoton.2010.306.

    [29] L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, John Wiley & Sons (2012).

    [30] S. L. Jacques, "Optical properties of biological tissues: A review," Phys. Med. Biol. 58(11), R37–R61 (2013), doi: 10.1088/0031-9155/58/11/R37.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High-speed all-optic optical coherence tomography and photoacoustic microscopy dual-modal system for microcirculation evaluation[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2250023
    Download Citation