• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 608 (2021)
Yongyong HU1、2、*, Ruyue CUI1、2, Hongpeng WU1、2, and Lei DONG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.005 Cite this Article
    HU Yongyong, CUI Ruyue, WU Hongpeng, DONG Lei. Design and progress of miniature multi-pass cells[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 608 Copy Citation Text show less
    References

    [1] Li C G, Dong L, Zheng C T, et al. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser [J]. Sensors and Actuators B: Chemical, 2016, 232: 188-194.

    [2] Cui R Y, Dong L, Wu H P, et al. Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy [J]. Optics Express, 2018, 26(19): 24318-24328.

    [3] Cui R Y, Dong L, Wu H P, et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration [J]. Optics Letters, 2019, 44(5): 1108-1111.

    [4] Hovde D C, Hodges J T, Scace G E, et al. Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in semiconductor gases [J]. Applied Optics, 2001, 40(6): 829-839.

    [5] Somesfalean G, Alnis J, Gustafsson U, et al. Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy [J]. Applied Optics, 2005, 44(24): 5148-5151.

    [6] Thoma M L, Kaschow R, Hindelang F J. A multiple-reflection cell suited for absorption measurements in shock tubes [J]. Shock Waves, 1994, 4(1): 51-53.

    [7] Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58.

    [8] Guo Y, Sun L, Yang Z, et al. Generalized design of a zero-geometric-loss, astigmatism-free, modified four-objective multipass matrix system [J]. Applied Optics, 2016, 55(6): 1435-1443.

    [9] Robert C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths [J]. Applied Optics, 2007, 46(22): 5408-5418.

    [10] Dong L, Li C G, Sanchez N P, et al. Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser [J]. Applied Physics Letters, 2016, 108(1): 011106.

    [11] Cai X L, Zhou C H, Zhou D J, et al. H2 stimulated Raman scattering in a multi-pass cell with a herriott configuration [J]. Chinese Physics Letters, 2015, 32(11): 114207.

    [12] Chibirev I, Mazzoleni C, van der Voort D D, et al. Raman spectrometer for field determination of H2O in natural gas pipelines [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 426-430.

    [13] Wei T T, Wu H P, Dong L, et al. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector [J]. Optics Express, 2021, 29(8): 12357-12364.

    [14] Cui R Y, Wu H P, Dong L, et al. Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell [J]. Applied Physics Letters, 2021, 118(16): 161101.

    [15] Sun H Y, Ma Y F, He Y, et al. Highly sensitive acetylene detection based on a compact multi-pass gas cell and optimized wavelength modulation technique [J]. Infrared Physics & Technology, 2019, 102: 103012.

    [16] Claps R, Englich F V, Leleux D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy [J]. Applied Optics, 2001, 40(24): 4387-4394.

    [17] Ren W, Luo L Q, Tittel F K. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm [J]. Sensors and Actuators B: Chemical, 2015, 221: 1062-1068.

    [18] Ghorbani R, Schmidt F M. Real-time breath gas analysis of CO and CO2 using an EC-QCL [J]. Applied Physics B, 2017, 123(5): 1-11.

    [19] Guo X Q, Zheng F, Li C L, et al. A portable sensor for in?situ measurement of ammonia based on near-infrared laser absorption spectroscopy [J]. Optics and Lasers in Engineering, 2019, 115: 243-248.

    [20] Fang B, Yang N N, Zhao W X, et al. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels [J]. Applied Optics, 2019, 58(32): 8743-8750.

    [21] Jeffers J D, Roller C B, Namjou K, et al. Real-time diode laser measurements of vapor-phase benzene [J]. Analytical Chemistry, 2004, 76(2): 424-432.

    [22] Rocco A, De Natale G, De Natale P, et al. A diode-laser-based spectrometer for insitu measurements of volcanic gases [J]. Applied Physics B, 2004, 78(2): 235-240.

    [23] Dang J M, Yu H Y, Sun Y J, et al. A CO trace gas detection system based on continuous wave DFB-QCL [J]. Infrared Physics & Technology, 2017, 82: 183-191.

    [24] Ghorbani R, Schmidt F M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes [J]. Optics Express, 2017, 25(11): 12743-12752.

    [25] Tanaka K, Miyamura K, Akishima K, et al. Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell [J]. Infrared Physics & Technology, 2016, 79: 1-5.

    [26] Liu J, Dong Y, Gu M S, et al. Development of inhaled portable methane detector based on TDLAS technique [J]. Chinese Journal of Quantum Electronics, 2019, 36(5): 521-527.

    [27] Hodgkinson J, Tatam R P. Optical gas sensing: A review [J]. Measurement Science and Technology, 2013, 24(1): 012004.

    [28] Hao L, Qiang S, Wu G, et al. Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy [J]. Review of Scientific Instruments, 2002, 73(5): 2079-2085.

    [29] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523-526.

    [30] Cui R Y, Dong L, Wu H P, et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns [J]. Applied Physics Letters, 2020, 116(9): 091103.

    [31] Dong M, Zheng C T, Yao D, et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC) [J]. Optics Express, 2018, 26(9): 12081-12091.

    [32] Cui R Y, Dong L, Wu H P, et al. Three-dimensional printed miniature fiber-coupled multipass cells with dense spot patterns for ppb-level methane detection using a near-IR diode laser [J]. Analytical Chemistry, 2020, 92(19): 13034-13041.

    [33] Gurlit W, Zimmermann R, Giesemann C, et al. Lightweight diode laser spectrometer CHILD (Compact high-altitude in-situ laser diode) for balloonborne measurements of water vapor and methane [J]. Applied Optics, 2005, 44(1): 91-102.

    [34] Richard E C, Kelly K K, Winkler R H, et al. A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere [J]. Applied Physics B, 2002, 75(2/3): 183-194.

    [35] Sonnenfroh D M, Wainner R T, Allen M G, et al. Interband cascade laser-based sensor for ambient CH4 [J]. Optical Engineering, 2010, 49(11): 111118.

    [36] McManus J B, Shorter J H, Nelson D D, et al. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air [J]. Applied Physics B, 2008, 92(3): 387-392.

    [37] Liu K, Wang L, Tan T, et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell [J]. Sensors and Actuators B: Chemical, 2015, 220: 1000-1005.

    [38] Bamberger I, Stieger J, Buchmann N, et al. Spatial variability of methane: Attributing atmospheric concentrations to emissions [J]. Environmental Pollution, 2014, 190: 65-74.

    HU Yongyong, CUI Ruyue, WU Hongpeng, DONG Lei. Design and progress of miniature multi-pass cells[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 608
    Download Citation