• Chinese Optics Letters
  • Vol. 19, Issue 11, 110602 (2021)
Mengyin Jin1, Zeyuan Qian1, Xinwei Chen1, Xugao Cui1, Ke Jiang2, Xiaojuan Sun2, Dabing Li2、*, and Pengfei Tian1、**
Author Affiliations
  • 1Institute for Electric Light Sources, School of Information Science and Technology, and Academy of Engineering and Technology, Fudan University, Shanghai 200433, China
  • 2State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.3788/COL202119.110602 Cite this Article Set citation alerts
    Mengyin Jin, Zeyuan Qian, Xinwei Chen, Xugao Cui, Ke Jiang, Xiaojuan Sun, Dabing Li, Pengfei Tian. Signal transmission of 4 GHz beyond the system bandwidth in UV-C LED communication based on temporal ghost imaging[J]. Chinese Optics Letters, 2021, 19(11): 110602 Copy Citation Text show less
    References

    [1] C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E.-N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, B. S. Ooi. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Sci. Appl., 8, 94(2019).

    [2] G. Chen, Z. Xu, H. Ding, B. M. Sadler. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Opt. Express, 17, 3929(2009).

    [3] X. He, E. Xie, M. S. Islim, A. A. Purwita, J. J. D. McKendry, E. Gu, H. Haas, M. D. Dawson. 1  Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262  nm. Photon. Res., 7, B41(2019).

    [4] Y. Tang, G. Q. Ni, Z. L. Wu, L. J. Zhang, Y. Lin. Research on channel character of solar blind UV communication. Proc. SPIE, 6829, 682907(2007).

    [5] M. A. El-Shimy, S. Hranilovic. Spatial-diversity imaging receivers for non-line-of-sight solar-blind UV communications. J. Lightwave Technol., 33, 2246(2015).

    [6] D. Han, Y. Liu, K. Zhang, P. Luo, M. Zhang. Theoretical and experimental research on diversity reception technology in NLOS UV communication system. Opt. Express, 20, 15833(2012).

    [7] T. Shan, J. Ma, T. Wu, Z. Shen, P. Su. Single scattering turbulence model based on the division of effective scattering volume for ultraviolet communication. Chin. Opt. Lett., 18, 120602(2020).

    [8] X. Zhou, X. Tan, Y. Wang, X. Song, T. Han, J. Li, W. Lu, G. Gu, S. Liang, Y. Lü, Z. Feng. High-performance 4H-SiC p-i-n ultraviolet avalanche photodiodes with large active area. Chin. Opt. Lett., 17, 090401(2019).

    [9] Z. Xu, B. M. Sadler. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag., 46, 67(2008).

    [10] S. Karp, R. M. Gagliardi, S. E. Moran, L. B. Stotts. Optical Channels(1988).

    [11] G. A. Shaw, A. M. Siegel, J. Model. Extending the range and performance of non-line-of-sight ultraviolet communication links. Proc. SPIE, 6231, 62310C(2006).

    [12] A. K. Majumdar, Q. He, C. C. Davis, B. M. Sadler, Z. Xu. Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications. Proc. SPIE, 7464, 74640H(2009).

    [13] D.-Y. Peng, J. Shi, G.-H. Peng, S.-L. Xiao, S.-H. Xu, S. Wang, F. Liu. An ultraviolet laser communication system using frequency-shift keying modulation scheme. Optoelectron. Lett., 11, 65(2015).

    [14] P. Luo, M. Zhang, D. Han, Q. Li. Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters. Opt. Express, 20, 23489(2012).

    [15] M. Noshad, M. Brandt-Pearce, S. G. Wilson. NLOS UV communications using M-ary spectral-amplitude-coding. IEEE Trans. Commun., 61, 1544(2013).

    [16] C. Xu, H. Zhang. Packet error rate analysis of IM/DD systems for ultraviolet scattering communications. IEEE Military Communications Conference(2015).

    [17] Y. Wang, S. Gu. Ultraviolet communication system based on BPSK subcarrier intensity modulation. Proc. SPIE, 9446, 94461K(2015).

    [18] . https://www.acgih.org/science/tlv-bei-guidelines/.

    [19] O. Alkhazragi, F. Hu, P. Zou, Y. Ha, C. H. Kang, Y. Mao, T. K. Ng, N. Chi, B. S. Ooi. Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. Opt. Express, 28, 9111(2020).

    [20] H. Qin, Y. Zuo, D. Zhang, Y. Li, J. Wu. Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication. Opt. Express, 25, 5018(2017).

    [21] H. Qin, Y. Zuo, F. Li, R. Cong, L. Meng, J. Wu. Noncoplanar geometry for mobile NLOS MIMO ultraviolet communication with linear complexity signal detection. IEEE Photon. J., 9, 7906012(2017).

    [22] L. Guo, D. Meng, K. Liu, X. Mu, W. Feng, D. Han. Experimental research on the MRC diversity reception algorithm for UV communication. Appl. Opt., 54, 5050(2015).

    [23] K. Kojima, Y. Yoshida, M. Shiraiwa, Y. Awaji, A. Kanno, N. Yamamoto, S. Chichibu. 1.6-Gbps LED-based ultraviolet communication at 280 nm in direct sunlight. 2018 European Conference on Optical Communication (ECOC)(2018).

    [24] H. Yin, H. Jia, H. Zhang, X. Wang, S. Chang, J. Yang. Extending the data rate of non-line-of-sight UV communication with polarization modulation. Proc. SPIE, 8540, 85400I(2012).

    [25] E. Xie, M. Stonehouse, R. Ferreira, J. J. D. McKendry, J. Herrnsdorf, X. He, S. Rajbhandari, H. Chun, A. V. N. Jalajakumari, O. Almer, G. Faulkner, I. M. Watson, E. Gu, R. Henderson, D. O’Brien, M. D. Dawson. Design, fabrication, and application of GaN-based micro-LED arrays with individual addressing by N-electrodes. IEEE Photon. J., 9, 7907811(2017).

    [26]

    [27] B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, M. J. Padgett. 3D computational imaging with single-pixel detectors. Science, 340, 844(2013).

    [28] F. Devaux, P.-A. Moreau, S. Denis, E. Lantz. Computational temporal ghost imaging. Optica, 3, 698(2016).

    [29] Y.-K. Xu, S.-H. Sun, W.-T. Liu, G.-Z. Tang, J.-Y. Liu, P.-X. Chen. Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging. Opt. Express, 26, 99(2018).

    [30] W. Meng, D. Shi, K. Yuan, L. Zha, J. Huang, Y. Wang, C. Fan. Fourier-temporal ghost imaging. Opt. Lasers Eng., 134, 106294(2020).

    [31] Y. Wang, H. Chen, W. Jiang, X. Li, X. Chen, X. Meng, P. Tian, B. Sun. Optical encryption for visible light communication based on temporal ghost imaging with a micro-LED. Opt. Lasers Eng., 134, 106290(2020).

    [32] Y. Tian, H. Ge, X.-J. Zhang, X.-Y. Xu, M.-H. Lu, Y. Jing, Y.-F. Chen. Acoustic ghost imaging in the time domain. Phys. Rev. Appl., 13, 064044(2020).

    [33] P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, G. Genty. Ghost imaging in the time domain. Nat. Photon., 10, 167(2016).

    [34] C. Zhang, S. Guo, J. Cao, J. Guan, F. Gao. Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express, 22, 30063(2014).

    [35] X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, M. H. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, B. S. Ooi. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt. Express, 26, 12870(2018).

    [36] X. Chen, M. Jin, H. Chen, Y. Wang, P. Qiu, X. Cui, B. Sun, P. Tian. Computational temporal ghost imaging for long-distance underwater wireless optical communication. Opt. Lett., 46, 1938(2021).

    Data from CrossRef

    [1] Zhongqiang Huang, Liyu Zhou, Xianwei Huang, Hao Qin, Xuanpengfan Zou, Xiquan Fu, Yanfeng Bai. BER performance of an FSOC system over atmospheric turbulence channels based on computational temporal ghost imaging. Journal of the Optical Society of America A, 40, 1478(2023).

    Mengyin Jin, Zeyuan Qian, Xinwei Chen, Xugao Cui, Ke Jiang, Xiaojuan Sun, Dabing Li, Pengfei Tian. Signal transmission of 4 GHz beyond the system bandwidth in UV-C LED communication based on temporal ghost imaging[J]. Chinese Optics Letters, 2021, 19(11): 110602
    Download Citation