• Laser & Optoelectronics Progress
  • Vol. 53, Issue 8, 80006 (2016)
Zhou Zichao*, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, and Xu Xiaojun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.080006 Cite this Article Set citation alerts
    Zhou Zichao, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, Xu Xiaojun. Application of Distributed Fiber Sensing in Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80006 Copy Citation Text show less
    References

    [1] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

    [2] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

    [3] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

    [4] Aoyama K I, Nakagawa K, Itoh T. Optical time domain reflectometry in a single-mode fiber[J]. IEEE Journal of Quantum Electronics, 1981, 17(6): 862-868.

    [5] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 1981, 39(9): 693-695.

    [6] Zhang Z, Liu H, Guo N, et al. Optimum designs of 30-km distributed optical fiber Raman photon temperature sensors and measurement network[C]. SPIE, 2002, 4920: 268-273.

    [7] Geng J P, Jin R H, Xu J D, et al. An improved model for the fully distributed temperature single-mode fibre optic sensor based on Raman optical frequency-domain reflectometry[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(10): 932-936.

    [8] Weng Y, Ip E, Pan Z, et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 2015, 23(7): 9024-9039.

    [9] Li W H, Bao X Y, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

    [10] Garus D, Gogolla T, Krebber K, et al. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements[J]. Journal of Lightwave Technology, 1997, 15(4): 654-662.

    [11] Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation[J]. IEICE Transactions on Electronics, 2000, 83(3): 405-412.

    [12] Zhang Z, Bao X Y. Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system[J]. Opt Express, 2008, 16(14): 10240-10247.

    [13] Wu H, Qian Y, Li H, et al. Safety monitoring of long distance power transmission cables and oil pipelines with OTDR technology[C]. CLEO: Applications and Technology, 2015: ATu1M.4.

    [14] Kreger S T, Sang A K, Gifford D K, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[C]. SPIE, 2009, 7316: 73160A.

    [15] Soller B, Gifford D, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

    [16] Belal M, Cho Y T, Ibsen M, et al. A temperature-compensated high spatial resolution distributed strain sensor[J]. Measurement Science and Technology, 2010, 21(1): 15204-15208.

    [19] Dong Y, Zhang H, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

    [20] Bernini R, Minardo A, Zeni L. Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors[J]. Smart Materials and Structures, 2008, 17(1): 015006.

    [21] Minardo A, Testa G, Zeni L, et al. Theoretical and experimental analysis of Brillouin scattering in single-mode optical fiber excited by an intensity-and phase-modulated pump[J]. Journal of Lightwave Technology, 2010, 28(2): 193-200.

    [22] Bernini R, Minardo A, Zeni L. Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.

    [23] Elooz D, Antman Y, Levanon N, et al. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis[J]. Optics Express, 2014, 22(6): 6453-6463.

    [24] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.

    [25] Soller B J, Gifford D K, Wolfe M S, et al. Measurement of localized heating in fiber optic components with millimeter spatial resolution[C]. Optical Fiber Communication Conference, 2006: OFN3.

    [26] Froggatt M E, Gifford D K, Kreger S, et al. Distributed strain and temperature discrimination in unaltered polarization maintaining fiber[C]. Optical Fiber Sensors, 2006: ThC5.

    [27] Kreger S T, Sang A K, Gifford D K, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[C]. SPIE, 2009, 7316: 73160A.

    [28] Song J, Li W H, Lu P, et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 2014, 6(3): 1-8.

    [29] Beier F, Heinzig M, Haarlammert N, et al. In situ temperature measurement in high power fiber amplifiers[C]. The European Conference on Lasers and Electro-Optics, 2015: CJ_10_6.

    [30] Walbaum T, Heinzig M, Beier F, et al. Spatially resolved measurement of the core temperature in a high-power thulium fiber system[C]. SPIE, 2016, 9728: 97280P.

    [31] Beier F, Heinzig M, Sattler B, et al. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold[C]. SPIE, 2016, 9728: 97282P.

    [32] Horiguchi T, Tateda M. BOTDA-Non destructive measurement of single-mode optical fiber attenuation characteristics using brillouin interaction: Theory[J]. Journal of Lightwave Technology, 1989, 7(8): 1170-1176.

    [33] Bao X, Webb D J, Jackson D A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber[J]. Optics Letters, 1993, 18(7): 552-554.

    [34] Liang H, Li W, Linze N, et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 2010, 35(10): 1503-1505.

    [35] Jauregui C, Richardson D J, Nilsson J, et al. In situ thermal/Brillouin characterization of a high-power fiber laser based on Brillouin optical time domain analysis[C]. Frontiers in Optics, 2008: FTuG7.

    [36] Garus D, Krebber K, Schliep F, et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.

    [37] Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques[J]. Optical Fiber Technology, 2013, 19(6): 700-719.

    [38] Tanaka M, Hotate K. Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material[J]. IEEE Photonics Technology Letters, 2002, 14(5): 675-677.

    [39] Song K Y, He Z, Hotate K. Effects of intensity modulation of light source on Brillouin optical correlation domain analysis[J]. Journal of Lightwave Technology, 2007, 25(5): 1238-1246.

    [40] Jeong J H, Lee K, Song K Y, et al. Differential measurement scheme for Brillouin optical correlation domain analysis[J]. Optics Express, 2012, 20(24): 27094-27101.

    [41] Song K Y, He Z, Hotate K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis[J]. Optics Letters, 2006, 31(17): 2526-2528.

    [42] Hotate K, Ong S S L. Distributed dynamic strain measurement using a correlation-based Brillouin sensing system[J]. IEEE Photonics Technology Letters, 2003, 15(2): 272-274.

    [43] Hotate K, Yamauchi T. Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme[J]. Japanese Journal of Applied Physics, 2005, 44(7L): L1030.

    [44] Song K Y, Hotate K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis[J]. IEEE Photonics Technology Letters, 2007, 23(19): 1928-1930.

    [45] Hotate K, Numasawa M, Kishi M, et al. High speed random accessibility of Brillouin optical correlation domain analysis with time division pump-probe generation scheme[C]. SPIE, 2012, 8351: 83510W.

    CLP Journals

    [1] Wu Yonghong, Zhu Sha, Xu Wei, Zhang Haiming. Progress in Distributed Optical Fiber Crack Sensing Engineering[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90002

    Zhou Zichao, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, Xu Xiaojun. Application of Distributed Fiber Sensing in Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80006
    Download Citation