• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 4, 392 (2020)
Jiayi YU1、2、*, Shuqin LIN1、2, Ying XU1、2, Xinlei ZHU3, Fei WANG3, and Yangjian CAI1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.04.002 Cite this Article
    YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392 Copy Citation Text show less
    References

    [3] Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: A review[J]. Progress in Electromagnetics Rresearch, 2015, 150: 123-143.

    [4] Hardy J W. Adaptive Optics for Astronomical Telescopes[M]. New York: Oxford University Press, 1998.

    [5] Lukin V P, Fortes B V. Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong intensity fluctuations[J]. Applied Optics, 2002, 41(27): 5616-5624.

    [6] Friberg A T, Sudol R J. Propagation parameters of gaussian Schell-model beams[J]. Optics Communications, 1982, 41(6): 383-387.

    [7] Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources-An example and some perspectives[J]. Journal of the Optical Society of America, 1983, 73(3): 256-261.

    [8] Mitchell M, Chen Z, Shih M F, et al. Self-trapping of partially spatially incoherent light[J]. Physical Review Letters, 1996, 77(3): 490-493.

    [9] Mitchell M, Segev M, Coskun T H. Theory of incoherent solitons: Self-trapped spatially incoherent light beams[C]. Quantum Electronics Conference, 1998.

    [10] Akhmediev N, Królikowski, Snyder A W. Partially coherent solitons of variable shape[J]. Physical Review Letters, 1998, 81(21): 4632-4635.

    [11] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586-2589.

    [12] Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence[J]. Applied Optics, 1999, 38(34): 7085-7094.

    [13] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative imaging[J]. Physical Review Letters, 2004, 93(6): 068103.

    [14] Wu G, Cai Y. Detection of a semirough target in turbulent atmosphere by a partially coherent beam[J]. Optics Letters, 2011, 36(10): 1939-1941.

    [15] Clark J N, Huang X, Harder R, et al. High-resolution three-dimensional partially coherent diffraction imaging[J]. Nature Communications, 2012, 3(8): 993.

    [16] Kagalwala K H, Di Giuseppe G, Abouraddy A F, et al. Bell’s measure in classical optical coherence[J]. Nature Photonics, 2012, 7(1): 72-78.

    [17] Canado L G, Beams R, Jorio A, et al. Theory of spatial coherence in near-field Raman scattering[J]. Physical Review X, 2014, 4(3): 031054.

    [18] Qian X F, Little B, Howell J C, et al. Shifting the quantum-classical boundary: Theory and experiment for statistically classical optical fields[J]. Optica, 2015, 2(7): 611-615.

    [19] Cai Y, Chen Y, Yu J, et al. Generation of partially coherent beams[J]. Progress in Optics, 2017, 62: 157-223.

    [21] Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: A review[J]. Journal of the Optical Society of America A, 2014, 31(9): 2083-2096.

    [22] Tamburini F, Anzolin G, Umbriaco G, et al. Overcoming the Rayleigh criterion limit with optical vortices[J]. Physical Review Letters, 2006, 97(16): 163903.

    [23] Wang H, Sheppard C J R, Ravi K, et al. Fighting against diffraction: Apodization and near field diffraction structures[J]. Laser & Photonics Reviews, 2012, 6(3): 1-39.

    [24] Wang H F, Shi L P, Yuan G Q, et al. Subwavelength and super-resolution nondiffraction beam[J]. Applied Physics Letters, 2006, 89(17): 171102.

    [25] Tong Z, Korotkova O. Beyond the classical Rayleigh limit with twisted light[J]. Optics Letters, 2012, 37(13): 2595.

    [26] Liang C, Wu G, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources[J]. Optics Express, 2017, 25(23): 28352.

    [27] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537-540.

    [28] Garcés-Chávez V, Mcgloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147.

    [29] Mazilu M, Dholakia K, Baumgartl J. Optically mediated particle clearing using Airy wavepackets[J]. Nature Photonics, 2008, 2(11): 675-678.

    [31] Born M, Wolf E. Principles of Optics[M]. Cambridge: Cambridge University, 1999.

    [32] Harlow G R. Wave propagation in a Random Medium[J]. Physics Bulletin, 1960, 11(9): 232-233.

    [33] Tatarskii V I. Wave Propagation in a Turbulent Medium[M]. New York: McGraw-Hill, 1961.

    [34] Lutomirski R F, Yura H T. Propagation of a finite optical beam in an inhomogeneous medium[J]. Applied Optics, 1971, 10(7): 1652-1658.

    [35] Banakh V A, Krekov G M, Mironov V L, et al. Focused-laser-beam scintillations in the turbulent atmosphere[J]. Journal of the Optical Society of America, 1974, 64(4): 516-518.

    [36] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. SPIE Press, 2005.

    [37] Dan Y, Zhang B. Second moments of partially coherent beams in atmospheric turbulence[J]. Optics Letters, 2009, 34(5): 563-565.

    [38] Dan Y, Zhang B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20): 15563-15575.

    [39] Siegman A E. New developments in laser resonators[J]. Optical Resonators, 1990, 1224: 2-14.

    [40] Gori F, Santarsiero M, Sona A. The change of width for a partially coherent beam on paraxial propagation[J]. Optics Communications, 1991, 82(3-4): 197-203.

    [41] Xiao X. Beam wander analysis for focused partially coherent beams propagating in turbulence[J]. Optical Engineering, 2012, 51(2): 026001.

    [42] Gu Y, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence[J]. Journal of the Optical Society of America A, 2010, 27(12): 2621-2629.

    [43] Gu Y, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Optics Letters, 2013, 38(9): 1395.

    [44] Kon A I, Tatarskii V I. On the theory of the propagation of partially coherent light beams in a turbulent atmosphere[J]. Radiophysics & Quantum Electronics, 1972, 15(10): 1187-1192.

    [45] Belen’Kii M S, Kon A I, Mironov V L. Turbulent distortions of the spatial coherence of a laser beam[J]. Soviet Journal of Quantum Electronics, 1977, 7(3): 287-290.

    [46] Leader J C. Atmospheric propagation of partially coherent radiation[J]. Journal of the Optical Society of America, 1978, 68(2): 175-185.

    [47] Fante R L. Two-position, two-frequency mutual-coherence function in turbulence[J]. Journal of the Optical Society of America, 1981, 71(12): 1446-1451.

    [48] Leader J C. Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence[J]. Journal of the Optical Society of America, 1979, 69(1): 73-84.

    [49] Fante R L. Intensity fluctuations of an optical wave in a turbulent medium effect of source coherence[J]. Journal of Modern Optics, 2012, 9: 1203-1207.

    [50] Banach V A, Buldakov V M, Mironov V L. Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere[J]. Optics & Spectroscopy, 1983, 54(6): 626-629.

    [51] Banakh V A, Buldakov V M. Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere[J]. Optics & Spectroscopy, 1983, 55(55): 423-426.

    [52] Fante R L. The effect of source temporal coherence on light scintillations in weak turbulence[J]. Journal of the Optical Society of America, 1979, 69(1): 71-73.

    [53] Wu J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4): 671-684.

    [54] Wu J, Boardman A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363.

    [55] Gbur G, Wolf E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America A, 2002, 19(8): 1592-1598.

    [56] Ponomarenko S A, Greffet J J, Wolf E. The diffusion of partially coherent beams in turbulent media[J]. Optics Communications, 2002, 208(1-3): 1-8.

    [57] Dogariu A, Amarande S. Propagation of partially coherent beams: Turbulence-induced degradation[J]. Optics Letters, 2003, 28(1): 10-12.

    [58] Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2003, 20(6): 1094-1102.

    [59] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802.

    [60] Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian-Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866.

    [61] Korotkova O. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom[J]. Optical Engineering, 2004, 43(2): 330.

    [62] Schulz T J. Iterative transform algorithm for the computation of optimal beams[J]. Journal of the Optical Society of America A, 2004, 21(10): 1970-1974.

    [63] Schulz T J. Optimal beams for propagation through random media[J]. Optics Letters, 2005, 30(10): 1093-1095.

    [64] Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources[J]. Optics Communications, 1987, 4(4): 311-316.

    [65] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 2008, 32(24): 3531-3533.

    [66] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Optics Letters, 2011, 36(20): 4104-4106.

    [67] Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams[J]. Journal of the Optical Society of America A, 2012, 20(24): 2154-2158.

    [68] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles[J]. Optics Letters, 2012, 37(14): 2970-2972.

    [69] Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America A, 2012, 29(10): 2159-2164.

    [70] Mei Z, Korotkova O, Shchepakina E. Electromagnetic multi-Gaussian Schell-model beams[J]. Journal of Optics, 2012, 15(2): 025705.

    [71] Mei Z, Korotkova O. Random sources generating ring-shaped beams[J]. Optics Letters, 2013, 38(2): 91-93.

    [72] Chen Y, Liu L, Wang F, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam[J]. Optics Express, 2014, 22(11): 13975-13987.

    [73] Chen Y, Yu J, Yuan Y, et al. Theoretical and experimental studies of a rectangular Laguerre-Gaussian-correlated Schell-model beam[J]. Applied Physics B, 2016, 122(2): 31.

    [74] Chen Y, Gu J, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 2015, 91(1): 013823.

    [75] Chen Y, Wang F, Yu J, et al. Vector Hermite-Gaussian correlated Schell-model beam[J]. Optics Express, 2016, 24(14): 15232-15250.

    [76] Mei Z, Korotkova O. Cosine-Gaussian Schell-model sources[J]. Optics Letters, 2013, 38(14): 2578-2580.

    [77] Ma L, Ponomarenko S A. Optical coherence gratings and lattices[J]. Optics Letters, 2014, 39(23): 6656-6659.

    [78] Ma L, Ponomarenko S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Optics Express, 2015, 23(2): 1848-1856.

    [79] Liang C, Mi C, Wang F, et al. Vector optical coherence lattices generating controllable far-field beam profiles[J]. Optics Express, 2017, 25(9): 9872-9885.

    [80] Chen R, Dong Y, Wang F, et al. Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere[J]. Applied Physics, 2013, B112(2): 247-259.

    [81] Cang J, Fang X, Liu X. Propagation properties of multi-Gaussian Schell-model beams through ABCD optical systems and in atmospheric turbulence[J]. Optics & Laser Technology, 2013, 50: 65-70.

    [82] Du S, Yuan Y, Liang C, et al. Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere[J]. Optics & Laser Technology, 2013, 50: 14-19.

    [83] Yuan Y, Liu X, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013: 57-65.

    [84] Korotkova O, Avramovzamurovic S, Nelson C, et al. Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence[C]. Proceedings of SPIE, 2014, 9224: 92240M.

    [85] Sharifi M, Wu G, Luo B, et al. Beam wander of electromagnetic partially coherent flat-topped beam propagating in turbulent atmosphere[J]. Optik International Journal for Light & Electron Optics, 2014, 125(1): 561-564.

    [86] Korotkova O, Shchepakina E. Rectangular Multi-Gaussian Schell-Model beams in atmospheric turbulence[J]. Journal of Optics, 2014, 16(4): 045704.

    [87] Wu G, Zhou H, Zhao T, et al. Propagation properties of electromagnetic multi-Gaussian Schell model beams propagating through atmospheric turbulence[J]. Journal of the Korean Physical Society, 2014, 64(6): 826-831.

    [88] Mei Z, Shchepakina E, Korotkova O. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence[J]. Optics Express, 2013, 21(15): 17512-17519.

    [89] Mei Z, Korotkova O. Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence[J]. Optics Express, 2013, 21(22): 27246-27259.

    [90] Xu H F, Zhang Z, Qu J, et al. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 2014, 22(19): 22479-22489.

    [91] Cang J, Xiu P, Liu X. Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere[J]. Optics & Laser Technology, 2013, 54: 35-41.

    [92] Wang H, Wang H, Xu Y, et al. Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere[J]. Optics & Laser Technology, 2014, 56: 1-6.

    [93] Chen R, Liu L, Zhu S, et al. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Express, 2014, 22(2): 1871-1883.

    [94] Zhou Y, Yuan Y, Qu J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence[J]. Optics Express, 2016, 24(10): 10682-10693.

    [95] Zhang B, Huang H, Xie C, et al. Twisted rectangular Laguerre-Gaussian correlated sources in anisotropic turbulent atmosphere[J]. Optics Communications, 2020, 459: 125004.

    [96] Song Z, Liu Z, Zhou K, et al. Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 2016, 24(2): 1804-1813.

    [97] Li J, Suo Q, Chen L. Analysis to beam quality of partially coherent flat-topped vortex beams propagating through atmospheric turbulence[J]. Optik International Journal for Light & Electron Optics, 2016, 127(23): 11342-11348.

    [98] Zhu J, Li X, Tang H, et al. Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence[J]. Optics Express, 2017, 25(17): 20071-20086.

    [99] Liu X, Yu J, Cai Y, et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Optics Letters, 2016, 41(18): 4182-4185.

    [100] Yu J, Chen Y, Liu L, et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(10): 13467-13481.

    [101] Yu J, Zhu X, Wang F, et al. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams[J]. Optics Letters, 2019, 44(17): 4371-4374.

    [102] Yu J, Cai Y, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties[J]. Optics Express, 2018, 26(21): 27894-27906.

    [103] Yu J, Wang F, Liu L, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence[J]. Optics Express, 2018, 26(13): 16333-16343.

    CLP Journals

    [1] ZHANG Chao, HAN Yashuai, ZHOU Zhengxian, QU Jun. Trapping of two types of Rayleigh particles using focused twisted Hermite-Gaussian-Schell model beam[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 742

    YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392
    Download Citation