• Acta Optica Sinica
  • Vol. 40, Issue 20, 2016001 (2020)
Chenggang Li1、2, Jie Zhang1、*, Zigang Shen1, Yingqi Cui1, Baozeng Ren2, Yuquan Yuan3, and Yanfei Hu3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, China
  • 2School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, China
  • 3School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China;
  • show less
    DOI: 10.3788/AOS202040.2016001 Cite this Article Set citation alerts
    Chenggang Li, Jie Zhang, Zigang Shen, Yingqi Cui, Baozeng Ren, Yuquan Yuan, Yanfei Hu. Investigation of Structure, Electronic and Spectral Properties of Ni B20- Cluster[J]. Acta Optica Sinica, 2020, 40(20): 2016001 Copy Citation Text show less
    References

    [1] Zhang S, Liu X Y, Wang Z et al. Density-functional theory study of the structural, stability and spectrum properties for Mg2Sin (n=1--9) clusters[J]. Acta Optica Sinica, 34, 0316002(2014).

    [2] Chen F L, Zhai Z Y, Chen G F et al. Stable structure and spectral properties of Yn(n=2--10) clusters[J]. Acta Optica Sinica, 35, 0816001(2015).

    [3] Zhang S, Zhang Y Y, Zhang P et al. Theoretical study of structural, stability and spectral properties of Ca2Sin(n=1--9) clusters[J]. Acta Optica Sinica, 33, 1116003(2013).

    [4] Ma D M, Shi W, Li E L et al. Structure and photoelectron energy spectrum of Ga2Asn ion clusters[J]. Acta Optica Sinica, 29, 1032-1037(2009).

    [5] Zhao T F, Leng Y X, Yang L Y et al. Characteristics of ultraviolet light scattering by soot cluster particles[J]. Laser & Optoelectronics Progress, 56, 050103(2019).

    [6] Wang L S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes[J]. International Reviews in Physical Chemistry, 35, 69-142(2016). http://www.tandfonline.com/doi/full/10.1080/0144235X.2016.1147816

    [7] Liu F, Shen C M, Su Z J et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties[J]. Journal of Materials Chemistry, 20, 2197-2205(2010). http://pubs.rsc.org/en/content/articlepdf/2010/jm/b919260c

    [8] Chen Q, Li W L, Zhao Y F et al. Experimental and theoretical evidence of an axially chiral borospherene[J]. ACS Nano, 9, 754-760(2015).

    [9] Li H R, Jian T, Li W L et al. Competition between quasi-planar and cage-like structures in the B29- cluster: photoelectron spectroscopy and ab initio calculations[J]. Physical Chemistry Chemical Physics, 18, 29147-29155(2016).

    [10] Zhai H J, Kiran B, Li J et al. Hydrocarbon analogues of boron clusters: planarity, aromaticity and antiaromaticity[J]. Nature Materials, 2, 827-833(2003).

    [11] Li W L, Chen Q, Tian W J et al. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene[J]. Journal of the American Chemical Society, 136, 12257-12260(2014).

    [12] Piazza Z A, Hu H S, Li W L et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets[J]. Nature Communications, 5, 3113(2014).

    [13] Li W L, Romanescu C, Galeev T R et al. Transition-metal-centered nine-membered boron rings: M©B9 and M© B9- (M=Rh, Ir)[J]. Journal of the American Chemical Society, 134, 165-168(2012).

    [14] Galeev T R, Romanescu C, Li W L et al. Observation of the highest coordination number in planar species: decacoordinated Ta© B10- and Nb© B10- anions[J]. Angewandte Chemie International Edition, 51, 2101-2105(2012).

    [15] Romanescu C, Galeev T R, Li W L et al. Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds[J]. Accounts of Chemical Research, 46, 350-358(2013).

    [16] Popov I A, Li W L, Piazza Z A et al. Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of Co B12- and Rh B12-[J]. The Journal of Physical Chemistry A, 118, 8098-8105(2014).

    [17] Popov I A, Jian T, Lopez G V et al. Cobalt-centred boron molecular drums with the highest coordination number in the Co B16- cluster[J]. Nature Communications, 6, 8654(2015).

    [18] Jian T, Li W L, Popov I A et al. Manganese-centered tubular boron cluster-Mn B16-: a new class of transition-metal molecules[J]. The Journal of Chemical Physics, 144, 154310(2016).

    [19] Jian T, Li W L, Chen X et al. Competition between drum and quasi-planar structures in Rh B18-: motifs for metallo-boronanotubes and metallo-borophenes[J]. Chemical Science, 7, 7020-7027(2016).

    [20] Xu C, Cheng L J, Yang J L. Double aromaticity in transition metal centered double-ring boron clusters M@ B2n (M=Ti, Cr, Fe, Ni, Zn; n=6, 7, 8)[J]. The Journal of Chemical Physics, 141, 124301(2014).

    [21] Li W L, Jian T, Chen X et al. The planar Co B18- cluster as a motif for metallo-borophenes[J]. Angewandte Chemie, 128, 7484-7489(2016).

    [22] Li C G, Shen Z G, Zhang J et al. Analysis of the structures, stabilities and electronic properties of M B16- (M=V, Cr, Mn, Fe, Co, Ni) clusters and assemblies[J]. New Journal of Chemistry, 44, 5109-5119(2020).

    [23] Lu Q L, Luo Q Q, Li Y D et al. Structure and properties of B20Si -/0/+ clusters[J]. The European Physical Journal D, 72, 103(2018).

    [24] Li W L, Jian T, Chen X et al. Observation of a metal-centered B2-Ta@ B18- tubular molecular rotor and a perfect Ta@ B20- boron drum with the record coordination number of twenty[J]. Chemical Communications, 53, 1587-1590(2017).

    [25] Zhao X Y, Luo X M, Tian X X et al. NiB10, Ni B11-, NiB12, and Ni B13+: half-sandwich complexes with the universal coordination bonding pattern of σ plus π double delocalization[J]. Journal of Cluster Science, 30, 115-121(2019).

    [26] Li H R, Tian X X, Luo X M et al. Heteroborospherene clusters Nin∈B40(n=1--4) and heteroborophene monolayers Ni2∈B14 with planar heptacoordinate transition-metal centers in η 7-B7 heptagons[J]. Scientific Reports, 7, 5701(2017).

    [27] Wang Y C, Lv J, Zhu L et al. Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 82, 094116(2010).

    [28] Wang Y C, Lv J, Zhu L et al. CALYPSO: a method for crystal structure prediction[J]. Computer Physics Communications, 183, 2063-2070(2012).

    [29] Lv J, Wang Y C, Zhu L et al. Particle-swarm structure prediction on clusters[J]. The Journal of Chemical Physics, 137, 084104(2012).

    [30] Baiyin B H, Sun W G, Cui J W et al. Density-functional theory study of the structural and spectrum properties for AlnCl (n=2--14) clusters[J]. Acta Optica Sinica, 35, 1202001(2015).

    [31] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. Journal of Chemical Physics, 110, 6158-6170(1999).

    [32] Ernzerhof M, Scuseria G E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional[J]. Journal of Chemical Physics, 110, 5029-5036(1999).

    [33] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 98, 5648-5652(1993).

    [34] Frisch M J, Trucks G W, Schlegel H B et al. Gaussian 09[M]. Wallingford, CT: Gaussian Inc.(2009).

    [35] Zhou G D, Duan L Y[M]. Structural chemistry basis, 1-10(2002).

    [36] Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 33, 580-592(2012).

    [37] An W, Bulusu S, Gao Y et al. Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-[J]. The Journal of Chemical Physics, 124, 154310(2006).

    [38] Zhang X R, Gao C H, Wu L Q et al. The theory study of electronic structures and spectrum properties of WnNim (n+m≤7; m=1,2) clusters[J]. Acta Physica Sinica, 59, 5429-5438(2010).

    Chenggang Li, Jie Zhang, Zigang Shen, Yingqi Cui, Baozeng Ren, Yuquan Yuan, Yanfei Hu. Investigation of Structure, Electronic and Spectral Properties of Ni B20- Cluster[J]. Acta Optica Sinica, 2020, 40(20): 2016001
    Download Citation