• Journal of Inorganic Materials
  • Vol. 38, Issue 11, 1292 (2023)
Mengtao WANG1, Jun SUO1, Dong FANG1,*, Jianhong YI1..., Yichun LIU1 and RUZIMURADOV Olim2|Show fewer author(s)
Author Affiliations
  • 11. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • 22. Turin Polytechnic University in Tashkent, Tashkent 100095, Uzbekistan
  • show less
    DOI: 10.15541/jim20230178 Cite this Article
    Mengtao WANG, Jun SUO, Dong FANG, Jianhong YI, Yichun LIU, RUZIMURADOV Olim. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292 Copy Citation Text show less
    References

    [1] J CHEN, T ZENG, S CHANG et al. Discharged titanium oxide nanotube arrays coated with Ni as a high-performance lithium battery electrode material. Energy Technology, 2200494(2022).

    [2] C SU, B Y HONG, C M TSENG. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 119(2004).

    [3] W BURASO, V LACHOM, P SIRIYA et al. Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Materials Research Express, 115003(2018).

    [4] M REHAN, X LAI, G.M. KALE. Hydrothermal synthesis of titanium dioxide nanoparticles studied employing in situ energy dispersive X-ray diffraction. CrystEngComm, 3725(2011).

    [5] A H MAMAGHANI, F HAGHIGHAT, C S LEE. Hydrothermal/ solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: preparation, characterization, properties, and performance. Chemosphere, 804(2019).

    [6] H SUN, C WANG, S PANG et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. Journal of Non-Crystalline Solids, 1440(2008).

    [7] Z M NASSAR, M H YÜKSELICI. The effect of strain and grain size on phonon and electron confinements in TiO2 thin films. Physica Status Solidi (b), 1700636(2018).

    [8] M CHIGANE, T SHINAGAWA, J I TANI. Preparation of titanium dioxide thin films by indirect-electrodeposition. Thin Solid Films, 203(2017).

    [9] R VIJAYALAKSHMI, V RAJENDRAN. Synthesis and characterization of nano-TiO2via different methods. Archives of Applied Science Research, 1183(2012).

    [10] K HASHIMOTO, H IRIE, A FUJISHIMA. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 8269(2005).

    [11] T YOSHIDA, Y MISU, M YAMAMOTO et al. Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catalysis Today, 34(2020).

    [12] J XIA, L DONG, H SONG et al. Preparation of doped TiO2 nanomaterials and their applications in photocatalysis. Bulletin of Materials Science, 13(2023).

    [13] E B AYDIN, M K SEZGINTÜRK. Indium tin oxide (ITO): a promising material in biosensing technology. TrAC Trends in Analytical Chemistry, 309(2017).

    [14] S BANERJEE, S MANDAL, A K BARUA et al. Hierarchical indium tin oxide (ITO) nano-whiskers: electron beam deposition and sub-bandgap defect levels mediated visible light driven enhanced photocatalytic activity. Catalysis Communications, 86(2016).

    [15] N WEI, H CUI, X WANG et al. Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: enhanced photocatalytic and gas-sensing properties. Journal of Colloid and Interface Science, 263(2017).

    [16] M KANEHARA, H KOIKE, T YOSHINAGA et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. Journal of the American Chemical Society, 17736(2009).

    [17] G.V NAIK, J KIM, A BOLTASSEVA. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Materials Express, 1090(2011).

    [18] S LI, J LIANG, P WEI et al. ITO@TiO2 nanoarray: an efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience, 382(2022).

    [19] T N DUNG, TRAN C DANG, DUC T TRINH et al. Fabrication and characteristics of Zn1-xSnxO nanorod/ITO composite photocatalytic films. Materials Research Express, 045504(2020).

    [20] P SIVASAKTHI, M V SANGARANARAYANAN, H GURUMALLESH PRABU. Micro-nanoarchitectures of electrodeposited Ni-ITO nanocomposites on copper foil as electrocatalysts for the oxygen evolution reaction. New Journal of Chemistry, 5146(2021).

    [21] A CHEN, S BAI, B SHI et al. Methane gas-sensing and catalytic oxidation activity of SnO2-In2O3 nanocomposites incorporating TiO2. Sensors and Actuators B: Chemical, 7(2008).

    [22] K WENDERICH, G MUL. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chemical Reviews, 14587(2016).

    [23] L CHEN, X L SONG, J T REN et al. Precisely modifying Co2P/ black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 121546(2022).

    [24] W JIANG, D QU, L AN et al. Deliberate construction of direct Z-scheme photocatalysts through photodeposition. Journal of Materials Chemistry A, 18348(2019).

    [25] J SUO, K JIAO, D FANG et al. Visible photocatalytic properties of Ag-Ag2O/ITO NWs fabricated by mechanical injection-discharge- oxidation method. Vacuum, 111338(2022).

    [26] Z WANG, C LUO, Y ZHANG et al. Construction of hierarchical TiO2 nanorod array/graphene/ZnO nanocomposites for high-performance photocatalysis. Journal of Materials Science, 15376(2018).

    [27] JOUAD Z EL, G LOUARN, T PRAVEEN et al. Improved electron collection in fullerene via caesium iodide or carbonate by means of annealing in inverted organic solar cells. EPJ Photovoltaics, 50401(2014).

    [28] M.T DANG, J LEFEBVRE, J.D. WUEST. Recycling indium tin oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides. ACS Sustainable Chemistry & Engineering, 3373(2015).

    [29] Q PAN, A LI, Y ZHANG et al. Rational design of 3D hierarchical ternary SnO2/TiO2/BiVO4 arrays photoanode toward efficient photoe lectrochemical performance. Advanced Science, 1902235(2020).

    [30] Z WANG, D KONG, M WANG et al. Sealing effect of surface porosity of Ti-P composite films on tinplates. RSC Advances, 12990(2019).

    [31] F J BAUER, P A B BRAEUER, S AßMANN et al. Characterisation of the transition type in optical band gap analysis of in- flame soot. Combustion and Flame, 111986(2022).

    [32] R E NIMSHI, J J VIJAYA, L J KENNEDY et al. Effective microwave assisted synthesis of CoFe2O4@TiO2@rGO ternary nanocomposites for the synergic sonophotocatalytic degradation of tetracycline and c antibiotics. Ceramics International, 13762(2023).

    [33] T SOLTANI, A TAYYEBI, B K LEE. Enhanced photoelectrochemical (PEC) and photocatalytic properties of visible-light reduced graphene-oxide/bismuth vanadate. Applied Surface Science, 465(2018).

    [34] S GU, W LI, F WANG et al. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Applied Catalysis B: Environmental, 186(2015).

    [35] F CHEN, Q YANG, F YAO et al. Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: reaction kinetics and intrinsic mechanism. Chemical Engineering Journal, 624(2019).

    [36] S GHANNADI, H ABDIZADEH, A RAKHSHA et al. Sol-electrophoretic deposition of TiO2 nanoparticle/nanorod array for photoanode of dye-sensitized solar cell. Materials Chemistry and Physics, 123893(2021).

    [37] E CHINARRO, B MORENO, J R JURADO. Combustion synthesis and EIS characterization of TiO2-SnO2 system. Journal of the European Ceramic Society, 3601(2007).

    [38] L W CHONG, H T CHIEN, Y L LEE. Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications. Journal of Power Sources, 5109(2010).

    [39] Y YANG, S LIAO, W SHI et al. Nitrogen-doped TiO2 (B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Advances, 10885(2017).

    [40] T ZHOU, J WANG, Y ZHANG et al. Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chemical Engineering Journal, 133414(2022).

    [41] R B WEI, P Y KUANG, H CHENG et al. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustainable Chemistry & Engineering, 4249(2017).

    [42] X L LUO, Z Y CHEN, S Y YANG et al. Two-step hydrothermal synthesis of peanut-shaped molybdenum diselenide/bismuth vanadate (MoSe2/BiVO4) with enhanced visible-light photocatalytic activity for the degradation of glyphosate. Journal of Colloid and Interface Science, 456(2018).

    [43] Y BI, Y YANG, X L SHI et al. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4. Journal of Materials Science & Technology, 102(2021).

    [44] X ZHANG, C CHEN, C JIANG et al. Construction and mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme heterojunction with enhanced photocatalytic activity. Catalysis Letters, 734(2021).

    [45] Y BAO, K CHEN. Novel Z-scheme BiOBr/reduced graphene oxide/ protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism. Applied Surface Science, 51(2018).

    [46] F GUO, J CHEN, J ZHAO et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole. Chemical Engineering Journal, 124014(2020).

    [47] T OHNO, K SARUKAWA, M MATSUMURA. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 1167(2002).

    Mengtao WANG, Jun SUO, Dong FANG, Jianhong YI, Yichun LIU, RUZIMURADOV Olim. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292
    Download Citation