• Chinese Journal of Quantum Electronics
  • Vol. 23, Issue 5, 621 (2006)
Xiao-qin SU*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    SU Xiao-qin. Realization of two-atom quantum controlled phase gate with high efficiency via cavity QED[J]. Chinese Journal of Quantum Electronics, 2006, 23(5): 621 Copy Citation Text show less
    References

    [2] Cirac J I,Zoller P. Quantum computations with cold trapped ions [J].Phys. Rev. Lett.,1995,74(20): 4091-4094;A scalable quantum computer with ions in an array of microtraps [J].Nature,2000,404: 579-581.

    [3] Pellizzari T,Gardiner S A,Cirac J I,et al. Decoherence,continuous observation,and quantum computing: a cavity QED model [J].Phys. Rev. Lett.,1995,75(21): 3788-3791.

    [4] Sleator T,et al. Realizable universal quantum logic gates [J].Phys. Rev. Lett.,1995,74(20): 4087-4090;Rauschenbeutel A,Nogues G,et al. Coherent operation of a tunable quantum phase in cavity QED [J].Phys. Rev. Lett.,1999,83(24): 5166-5169.

    [5] Gerschenfeld N A,Chuang I L. Bulk spin-resonance quantum computation [J].Science,1997,275: 350-356;Kane B E. A silicon-based nuclear spin quantum computer [J].Nature,1998,393: 133-137.

    [6] Barenco A,Deutsch D,Ekert A. Conditional quantum dynamics and logic gates [J].Phys. Rev. Lett.,1995,74(20): 4083-4086.

    [7] Loss D,Divincenzo D P. Quantum computation with quantum dots [J].Phys. Rev. A,1998,57(1): 120-126.

    [8] Yamamoto Y,Slusher Richart E. Optical processes in microcavities [J].Phys. Today,1993,46(6): 66-69;Biswas Asoka,Agarwal G S. Quantum logic gates using Stark-shifted Raman transitions in a cavity [J].Phys. Rev. A,2004,69(6): 062306.

    [11] Xiao Y F,Lin X M,Gao J,et al. Realizing quantum controlled phase flip through cavity QED [J].Phys. Rev. A,2004,70(4): 042314.

    [12] Turchette Q A,Hood C J,Lange W,et al. Measurement of conditional phase shifts for quantum logic [J].Phys. Rev. Lett.,1995,75(25): 4710-4713.

    [13] Chuang I L,Yamamoto Y. Simple quantum computer[J].Phys,Rev. A,1995,52(5): 3489-3496.

    [14] Cirac J I,Zoller P,Kimble H J,et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J].Phys. Rev. Lett.,1997,78(16): 3221-3224.

    [15] Pachos J,Walther H. Quantum computation with trapped ions in an optical cavity [J].Phys. Rev. Lett.,2002,89(18): 187903.

    [16] Garcia-Maraver R,Corbalan R,Eckert K,et al. Cavity QED quantum phase gates for a single longitudinal mode of the intracavity field [J].Phys. Rev. A,2004,70(6): 062324.

    [17] Xiao Y F,Han Z F,et al. Generation of multi-atom Dicke states through the detection of cavity decay [J].J. Phys. B: At. Mol. Opt. Phys.,2006,39: 485-491.

    [18] Beige A,Braun D,Tregenna B,et al. Quantum computing using dissipation to remain in a decoherence-free subspace [J].Phys. Rev. Lett.,2000,85(8): 1762-1765.

    [19] Khitrova G,Gibbs H M,et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities [J].Rev. Mod. Phys.,1999,71: 1591-1639.

    [20] Blais A,Huang R S,Wallraff A,et al. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation [J].Phys. Rev. A,2004,69(6): 062320.

    [21] Yang C P,Chu Shih I,Han S. Quantum information transfer and entanglement with SQUID in cavity QED: a Dark-State scheme with tolerance for Nonuniform device parameter [J].Phys. Rev. Lett.,2004,92(11): 117902.

    [22] Hennrich M,Legero T,Kuhn A,et al. Vacuum-stimulated Raman scattering based on adiabatic passage in a High-finesse optical cavity [J].Phys. Rev. Lett.,2000,85(23): 4872-4875.

    SU Xiao-qin. Realization of two-atom quantum controlled phase gate with high efficiency via cavity QED[J]. Chinese Journal of Quantum Electronics, 2006, 23(5): 621
    Download Citation