[1] Y. Soejima, M. Shimada, T. Suehiro, K. Kishikawa, T. Yoshizumi, K. Hashimoto, R. Minagawa, S. Hiroshige, T. Terashi, M. Ninomiya, S. Shiotani, N. Harada, K. Sugimachi, “Use of steatotic graft in living-donor liver transplantation," Transplantation 76(2), 344–348 (2003).
[2] W. R. Kim, J. R. Lake, J. M. Smith, M. A. Skeans, D. P. Schladt, E. B. Edwards, A. M. Harper, J. L. Wainright, J. J. Snyder, A. K. Israni, B. L. Kasiske, “OPTN/SRTR 2013 Annual Data Report: Liver," Am. J. Transplant 15(Suppl. 2), 1–28 (2015), doi: 10.1111/ajt.13197.
[3] L. De Carlis, C. V. Sansalone, G. F. Rondinara, G. Colella, A. O. Slim, O. Rossetti, P. Aseni, A. Della Volpe, L. S. Belli, A. Alberti, R. Fesce, D. Forti, “Is the use of marginal donors justified in liver transplantation-Analysis of results and proposal of modern criteria," Transpl. Int. 9, S414–S417 (1996).
[4] T. M. Fishbein, M. I. Fiel, S. Emre, O. Cubukcu, S. R. Guy, M. E. Schwartz, C. M. Miller, P. A. Sheiner, “Use of livers with microvesicular fat safely expands the donor pool," Transplantation 64, 248–251 (1997).
[5] F. Zamboni, A. Franchello, E. David, G. Rocca, A. Ricchiuti, B. Lavezzo, M. Rizzetto, M. Salizzoni, “Effect of macrovescicular steatosis and other donor and recipient characteristics on the outcome of liver transplantation," Clin. Transpl. 15(1), 53–57 (2001).
[6] H. Kato, N. Kuriyama, S. Duarte, P. A. Clavien, R. W. Busuttil, A. J. Coito, “MMP-9 deficiency shelters endothelial PECAM-1 expression and enhances regeneration of steatotic livers after ischemia and reperfusion injury," J. Hepatol. 60(5), 1032–1039 (2014).
[7] S. Nagai, Y. Fujimoto, H. Kamei, T. Nakamura, T. Kiuchi, “Mild hepatic macrovesicular steatosis may be a risk factor for hyperbilirubinaemia in living liver donors following right hepatectomy," Br. J. Surg. 96(4), 437–444 (2009), doi: 10.1002/bjs.6479.
[8] M. J. Lee, P. Bagci, J. Kong, M. B. Vos, P. Sharma, B. Kalb, J. H. Saltz, D. R. Martin, N. V. Adsay, A. B. Farris, “Liver steatosis assessment: Correlations among pathology, radiology, clinical data and automated image analysis software," Pathol. Res. Pract. 209(6), 371–379 (2013), doi: 10.1016/j.prp.2013.04.001.
[9] H. Yersiz, C. Lee, F. M. Kaldas, J. C. Hong, A. Rana, G. T. Schnickel, J. A. Wertheim, A. Zarrinpar, V. G. Agopian, J. Gornbein, B. V. Naini, C. R. Lassman, R. W. Busuttil, H. Petrowsky, “Assessment of hepatic steatosis by transplant surgeon and expert pathologist: A prospective, doubleblind evaluation of 201 donor livers," Liver Transpl. 19(4), 437–449 (2013), doi: 10.1002/lt.23615. Epub 2013 March 17.
[10] A. R. Teixeira, M. Bellodi-Privato, J. B. Carvalheira, V. F. Pilla, J. C. Pareja, L. A. D'Albuquerque, “The incapacity of the surgeon to identify NASH in bariatric surgery makes biopsy mandatory," Obes. Surg. 19(12), 1678–1684 (2009), doi: 10.1007/s11695-009-9980-x.
[11] J. R. van Werven, H. A. Marsman, A. J. Nederveen, N. J. Smits, F. J. ten Kate, T. M. van Gulik, J. Stoker, “Assessment of hepatic steatosis in patients undergoing liver resection: Comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy," Radiology 256(1), 159–168 (2010), doi: 10.1148/radiol. 10091790.
[12] S. Zelber-Sagi, M. Webb, N. Assy, L. Blendis, H. Yeshua, M. Leshno, V. Ratziu, Z. Halpern, R. Oren, E. Santo, “Comparison of fatty liver index with noninvasive methods for steatosis detection and quantification," World J. Gastroenterol. 19(1), 57–64 (2013), doi: 10.3748/wjg.v19.i1.57.
[13] A. Chauhan, L. R. Sultan, E. E. Furth, L. P. Jones, V. Khungar, C. M. Sehgal, “Diagnostic accuracy of hepatorenal index in the detection and grading of hepatic steatosis," J. Clin. Ultrasound 44(9), 580–586 (2016), doi: 10.1002/jcu.22382.
[14] A. J. Hessheimer, D. Parramon, A. Guimerà, I. Erill, A. Rimola, J. C. Garcia-Valdecasas, R. Villa, C. Fondevila, “A rapid and reliable means of assessing hepatic steatosis in vivo via electrical bioimpedance," Transplantation 88(5), 716–722 (2009), doi: 10.1097/TP.0b013e3181b391c0.
[15] G. Xu, Z. X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, X. Wang, “The functional pitch of an organ: Quantification of tissue texture with photoacoustic spectrum analysis," Radiology 271(1), 248–254 (2014), doi: 10.1148/radiol.13130777.
[16] D. J. Evers, A. C. Westerkamp, J. W. Spliethoff, V. V. Pully, D. Hompes, B. H. Hendriks, W. Prevoo, M. L. van Velthuysen, R. J. Porte, T. J. Ruers, “Diffuse reflectance spectroscopy: Toward real-time quantification of steatosis in liver," Transpl. Int. 28(4), 465–474 (2015), doi: 10.1111/tri.12517. Epub 2015 January 21.
[17] A. C. Westerkamp, V. V. Pully, G. Karimian, F. Bomfati, Z. J. Veldhuis, J. Wiersema-Buist, B. H. Hendriks, T. Lisman, R. J. Porte, “Diffuse reflectance spectroscopy accurately quantifies various degrees of liver steatosis in murine models of fatty liver disease," J. Transpl. Med. 13, 309 (2015), doi: 10.1186/s12967-015-0671-1.
[18] J. H. Nilsson, N. Reistad, H. Brange, C. F. Oberg, C. Sturesson, “Diffuse reflectance spectroscopy for surface measurement of liver pathology," Eur. Surg. Res. 58(1–2), 40–50 (2017), doi: 10.1159/000449378.
[19] T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy," Transplantation 62, 642–647 (1996).
[20] B. L. McLaughlin, A. C. Wells, S. Virtue, A. Vidal-Puig, T. D. Wilkinson, C. J. Watson, P. A. Robertson, “Electrical and optical spectroscopy for quantitative screening of hepatic steatosis in donor livers," Phys. Med. Biol. 55(22), 6867–6879 (2010).
[21] D. A. Fabila-Bustos, U. D. Arroyo-Camarena, M. D. Lopez-Vancell, M. A. Duran-Padilla, I. Azuceno-Garcia, S. Stolik-Isakina, E. Ibarra-Coronado, B. Brown, G. Escobedo, J. M. de la Rosa-Vazquez, “Diffuse reflectance spectroscopy as a possible tool to complement liver biopsy for grading hepatic fibrosis in para±n-preserved human liver specimens," Appl. Spectrosc. 68(12), 1357–1364 (2014), doi: 10.1366/14-07462. Epub 2014 November 1.
[22] A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg. “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl Acad. Sci. USA 104(10), 4014–4019 (2007). Epub 2007 February 28.
[23] H. Itagaki, K. Shimizu, S. Morikawa, K. Ogawa, T. Ezaki, “Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice," Int. J. Clin. Exp. Pathol. 6(12), 2683–2696 (2013). eCollection 2013.
[24] J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, Z. Huang. “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique," J. Biomed. Opt. 16(11), 116024 (2011), doi: 10.1117/1.3655353.
[25] W. J. Howat, B. A. Wilson, “Tissue fixation and the effect of molecular fixatives on downstream staining procedures," Methods 70(1), 12–19 (2014).
[26] W. Wilson, “A trichrome method for staining fat with oil red O in frozen sections," Bull. Int. Assoc. Med. Mus. 31, 216–220 (1950).
[27] D. Piao, K. L. McKeirnan, Y. Jiang, M. A. Breshears, K. E. Bartels, “A low-cost needle-based single-fiber spectroscopy method to probe scattering changes associated with mineralization in canine intervertebral disc," Photon. LasersMed. 1(2), 103–115 (2012).
[28] D. Piao, K. L. McKeirnan, N. Sultana, M. A. Breshears, A. Zhang, K. E. Bartels, “Percutaneous single-fiber reflectance spectroscopy of canine intervertebral disc: Is there a potential for in situ probing of mineral degeneration?" Lasers Surg. Med. 46(6), 508–519 (2014), doi: 10.1002/lsm.22261. Epub 2014 June 1.d.
[29] S. C. Kanick, H. J. C. M. Sterenborg, A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device," Opt. Exp. 17(2), 860–871 (2009).
[30] S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth," Phys.Med. Biol. 54(22), 6991–7008 (2009).
[31] S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, “Measurement of the reduced scattering coe±cient of turbid media using single fiber reflectance spectroscopy: Fiber diameter and phase function dependence," Biomed. Opt. Exp. 2, 1687–1702 (2011).
[32] S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium," Opt. Lett. 36, 2997–2999 (2011).
[33] U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, “Quantification of the reduced scattering coe±cient and phase-functiondependent parameter of turbid media using multidiameter single fiber reflectance spectroscopy: Experimental validation," Opt. Lett. 37, 1838–1840 (2012).
[34] F. van Leeuwen-van Zaane, U. A. Gamm, P. B. van Driel, T. J. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. Loowik, H. J. Sterenborg, A. Amelink, D. J. Robinson, “ In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy," Biomed. Opt. Exp. 4(5), 696–708 (2013).
[35] D. Piao, N. Sultana, G. R. Holyoak, J. W. Ritchey, C. R. Wall, J. K. Murray, K. E. Bartels, “ In vivo assessment of diet-induced rat hepatic steatosis development by percutaneous single-fiber spectroscopy detects scattering spectral changes due to fatty infiltration," J. Biomed. Opt. 20(11), 117002 (2015), doi: 10.1117/1.JBO.20.11.117002.
[36] VirtualPhotonics Technology Initiative, http://www.virtualphotonics.org/software. Accessed on September 2, 2017. This open source resource was made possible in part by the Laser Microbeam and Medical Program (LAMMP: P41 EB015890-33), an NIH/NIBIB Biotechnology Resource Center.
[37] R. Nachabe, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, T. J. M. Ruers, “Effect of bile absorption coe±cients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples," Biomed. Opt. Exp. 2, 600–614 (2011).
[38] N. Rajaram, A. Gopal, X. Zhang, J. W. Tunnell. “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy," Lasers Surg. Med. 42(7), 680–688 (2010).
[39] C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis," Nat. Methods 9(7), 671–675 (2012).
[40] Y. Fudaba, A. Oshita, H. Tashiro, H. Ohdan, “Intrahepatic triglyceride measurement and estimation of viability in rat fatty livers by near-infrared spectroscopy," Hepatol. Res. 45(4), 470–479 (2015), doi: 10.1111/hepr.12364. Epub 2014 June 27.
[41] D. G. Altman, J. M. Bland, “Absence of evidence is not evidence of absence," Br. Med. J. 311(7003), 485 (1995).
[42] F. Ge, H. Lobdell4th, S. Zhou, C. Hu, P. D. Berk, “Digital analysis of hepatic sections in mice accurately quantitates triglycerides and selected properties of lipid droplets," Exp. Biol. Med. (Maywood) 235(11), 1282–1286 (2010), doi: 10.1258/ebm.2010.010095.
[43] R. Vetelainen, A. van Vliet, T. M. van Gulik, “Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model," J. Gastroenterol. Hepatol. 22(9), 1526–1533 (2007).
[44] H. Marsman, T.Matsushita, R. Dierkhising, W. Kremers, C. Rosen, L. Burgart, S. L. Nyberg, “Assessment of donor liver steatosis: Pathologist or automated software?" Hum. Pathol. 35(4), 430–435 (2004).
[45] N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, J. P. Culver, “Brain specificity of diffuse optical imaging: Improvements from superficial signal regression and tomography," Front Neuroenerg. 2(pii), 14 (2010), doi: 10.3389/fnene.2010.00014.
[46] S. H. Ibrahim, P. Hirsova, H. Malhi, G. J. Gores, “Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame," Dig. Dis. Sci. 61(5), 1325–1336 (2016), doi: 10.1007/s10620-015-3977-1. Epub 2015 December 1.