• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 111502 (2019)
Jundong Fu*, Qing Chen, Yunxia Qiu, and Cong Ye
Author Affiliations
  • School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
  • show less
    DOI: 10.3788/LOP56.111502 Cite this Article Set citation alerts
    Jundong Fu, Qing Chen, Yunxia Qiu, Cong Ye. Indoor Light Environment Simulation Based on Light Energy Transfer Method[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111502 Copy Citation Text show less
    Calculation of reflection factorbetween two points
    Fig. 1. Calculation of reflection factorbetween two points
    Average illuminance error rate and running time versus number of reflection calculations
    Fig. 2. Average illuminance error rate and running time versus number of reflection calculations
    Illuminance distribution results of work surface for each case. (a) Case 1, model simulation; (b) Case 2, model simulation; (3) Case 3, model simulation; (d) Case 4, model simulation; (e) Case 1, DIALux simulation; (f) Case 2, DIALux simulation (g) Case 3, DIALux simulation; (h) Case 4, DIALux simulation
    Fig. 3. Illuminance distribution results of work surface for each case. (a) Case 1, model simulation; (b) Case 2, model simulation; (3) Case 3, model simulation; (d) Case 4, model simulation; (e) Case 1, DIALux simulation; (f) Case 2, DIALux simulation (g) Case 3, DIALux simulation; (h) Case 4, DIALux simulation
    Illumination error rates of each case
    Fig. 4. Illumination error rates of each case
    Definition of diffuse reflection parameters
    Fig. 5. Definition of diffuse reflection parameters
    Error rate of each illuminance value as a function of roughness
    Fig. 6. Error rate of each illuminance value as a function of roughness
    NumberSpace bottom shapeLighting arrangement
    Case 1Conventionalrectangular spaceUniformarrangement
    Case 2Unequal space onthe groundUniform arrangement
    Case 3Conventionalrectangular spaceUnequal heights
    Case 4Round floor spaceRing arrangement
    Table 1. Cases of light environment model
    Case typeAveragedirectillumination /lxAveragereflectedilluminance /lxAverageillumination /lx
    Case 1 /lx20877284
    DIALux /lx20682289
    Error rate /%-0.76-6.480.76
    Case 2 /lx20877285
    DIALux /lx20682288
    Error rate /%0.77-5.74-1.08
    Case 3 /lx22083303
    DIALux /lx21680296
    Error rate /%2.053.762.52
    Case 4 /lx20292293
    DIALux /lx20590295
    Error rate /%-1.631.78-0.60
    Table 2. Comparison of average illuminance calculation results
    Case typeMinimumillumination /lxMaximumillumination /lxIlluminationuniformity
    Case 1 /lx1193480.34
    DIALux /lx1763500.50
    Error rate /%33.90.632
    Case 2 /lx1193490.34
    DIALux /lx1753500.50
    Error rate /%34.10.332
    Case 3 /lx1703810.33
    DIALux /lx1733680.47
    Error rate /%26.63.529.8
    Case 4 /lx1843440.54
    DIALux /lx2213290.67
    Error rate /%16.7-4.619.4
    Table 3. Comparison of illuminance uniformity calculation results
    Case typeEdmaxEdminEfmaxEfmin
    Case 1 /lx2741019518
    DIALux /lx27410010375
    Error rate /%00.50-7.38-75.6
    Case 2 /lx2741019218
    DIALux /lx27410010175
    Error rate /%00.50-8.81-75.8
    Case 3 /lx29710310319
    DIALux /lx2959810371
    Error rate /%0.685.100.00-73.2
    Case 4 /lx24614013844
    DIALux /lx24214111475
    Error rate /%1.65-0.7121.05-41.3
    Table 4. Comparison of direct and reflected components of light energy
    Case typeEdvEfvEvEmaxEminU
    Case 1 /lx208792833481600.46
    DIALux /lx206822893501760.50
    Error rate /%-0.76-3.660.310.69.108.05
    Case 2 /lx208782863491670.48
    DIALux /lx206822883501750.50
    Error rate /%0.77-4.89-1.080.34.574.30
    Case 3 /lx220823023811690.44
    DIALux /lx216802963681730.47
    Error rate /%2.052.562.023.52.312.64
    Case 4 /lx202922913442190.64
    DIALux /lx205902953292210.67
    Error rate /%-1.631.78-1.36-4.60.904.98
    Table 5. Simulated illuminance value and uniformity error after model improvement
    Jundong Fu, Qing Chen, Yunxia Qiu, Cong Ye. Indoor Light Environment Simulation Based on Light Energy Transfer Method[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111502
    Download Citation