[1] S. B. Darling, F. Q. You, T. Veselka, A. Velosa. Assumptions and the levelized cost of energy for photovoltaics. Energy Environ. Sci., 4, 3133-3139(2011).
[2] D. J. Yue, P. Khatav, F. Q. You, S. B. Darling. Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy Environ. Sci., 5, 9163-9172(2012).
[3] (2013).
[4] K. Efthymios, R. Bryce. Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer. Prog. Photovoltaics Res. Appl., 19, 345-351(2011).
[5] D. Ginley, M. A. Green, R. Collins. Solar energy conversion toward 1 terawatt. MRS Bull., 33, 355-364(2008).
[6] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl., 19, 894-897(2011).
[7] X. Chen, B. H. Jia, Y. N. Zhang, M. Gu. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci. Appl., 2, e92(2013).
[8] C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot. Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog. Photovoltaics Res. Appl., 18, 434-452(2010).
[9] W. M. Robert, Z. Guillaume, F. Ian. Inorganic photovoltaic cells. Mater. Today, 10, 20-27(2007).
[10] B. O’Regan, M. Grätzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740(1991).
[11] A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, H. Pettersson. Dye-sensitized solar cells. Chem. Rev., 110, 6595-6663(2010).
[12] J. Y. Cong, X. C. Yang, L. Kloo, L. C. Sun. Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ. Sci., 5, 9180-9194(2012).
[13] N. Tetreault, M. Grätzel. Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci., 5, 8506-8516(2012).
[14] G. Boschloo, A. Hagfeldt. Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells. Acc. Chem. Res., 42, 1819-1826(2009).
[15] J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun., 3, 631(2012).
[16] E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, C. Zuccaccia. Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J. Am. Chem. Soc., 134, 19438-19453(2012).
[17] S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, G. Boschloo. Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc., 132, 16714-16724(2010).
[18] C. K. Xu, J. M. Wu, U. V. Desai, D. Gao. Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc., 133, 8122-8125(2011).
[19] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang. Nanowire dye-sensitized solar cells. Nat. Mater., 4, 455-459(2005).
[20] B. Liu, E. S. Aydil. Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc., 131, 3985-3990(2009).
[21] D. B. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2, 1113-1116(2008).
[22] Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, Z. S. Wang. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ. Sci., 4, 2145-2151(2011).
[23] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 334, 629-634(2011).
[24] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395, 583-585(1998).
[25] L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Phys. Chem. Chem. Phys., 14, 779-789(2012).
[26] W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. J. Phys. Chem. C, 115, 7038-7043(2011).
[27] S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, Y. L. Li. Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B, 108, 18693-18697(2004).
[28] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida. Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole. Sol. Energy Mater. Sol. Cells, 55, 113-125(1998).
[29] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Gra¨tzel. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett., 79, 2085-2087(2001).
[30] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).
[31] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2, 591(2012).
[32] M. Liu, M. B. Johnston, H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395-398(2013).
[33] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci., 7, 1142-1147(2014).
[34] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3, 4088-4093(2011).
[35] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).
[36] L. Etgar, P. Gao, Z. S. Xue, Q. Peng, A. K. Chandiran. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc., 134, 17396-17399(2012).
[37] S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, D. W. Kim. Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells. ACS Nano, 7, 1027-1035(2013).
[38] E. Edri, S. Kirmayer, D. Cahen, G. Hodes. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett., 4, 897-902(2013).
[39] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett., 13, 1764-1769(2013).
[40] D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E. M. J. Johansson. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett., 4, 1532-1536(2013).
[41] I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, M. G. Kanatzidis. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485, 486-489(2012).
[42] H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett., 13, 2412-2417(2013).
[43] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Y. Jen. High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett., 13, 3124-3128(2013).
[44] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci., 6, 1739-1743(2013).
[45] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319(2013).
[46] W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi. Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett., 13, 4505-4510(2013).
[47] A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, R. Avolio. Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. J. Am. Chem. Soc., 135, 13538-13548(2013).
[48] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24, 151-157(2014).
[49] D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures. RSC Adv., 3, 18762-18766(2013).
[50] J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, C. Mu. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 5, 3245-3248(2013).
[51] D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. J. Johansson. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale, 5, 11686-11691(2013).
[52] J. A. Christians, R. C. M. Fung, P. V. Kamat. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc., 136, 758-764(2014).
[53] N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Gra¨tzel. Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials. J. Am. Chem. Soc., 135, 19087-19090(2013).
[54] T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, T. C. Sum. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C, 118, 16458-16462(2014).
[55] B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, J. Manca. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater., 26, 2041-2046(2014).
[56] J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber. Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett., 14, 724-730(2014).
[57] Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, H. S. Duan. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 136, 622-625(2014).
[58] D. Y. Liu, L. Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 8, 133-138(2014).
[59] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 7, 982-988(2014).
[60] J. B. You, Z. R. Hong, Y. Yang, Q. Chen, M. Cai. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 8, 1674-1680(2014).
[61] G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013).
[62] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).
[63] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater., 26, 1584-1589(2014).
[64] G. Hodes. Perovskite-based solar cells. Science, 342, 317-318(2013).
[65] R. F. Service. Turning up the light. Science, 342, 794-797(2013).
[66] M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, Z. Q. Lin. High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. J. Mater. Chem., 2, 5994-6003(2014).
[67] H. J. Snaith. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett., 4, 3623-3630(2013).
[68] J. H. Rhee, C. C. Chung, E. W. G. Diau. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Mater., 5, e68(2013).
[69] N. G. Park. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 4, 2423-2429(2013).
[70] I. Borriello, G. Cantele, D. Ninno. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B, 77, 235214(2008).
[71] G. Shirane, H. Danner, R. Pepinshi. Neutron diffraction study of orthorhombic BaTiO3. Phys. Rev., 105, 856-860(1957).
[72] E. P. Giannelis. Polymer layered silicate nanocomposites. Adv. Mater., 8, 29-35(1996).
[73] S. S. Ray, M. Okamoto. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 28, 1539-1641(2003).
[74] S. S. Ray, M. Bousmina. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci., 50, 962-1079(2005).
[75] D. B. Mitzi. Synthesis and crystal structure of the alkylbismuth diiodides: a family of extended one-dimensional organometallic compounds. Inorg. Chem., 35, 7614-7619(1996).
[76] D. B. Mitzi, C. A. Field, Z. Schlesinger, R. B. Laibowitz. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem., 114, 159-163(1995).
[77] O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, M. J. M. V. Oort. Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem., 68, 412-422(1990).
[78] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem., 52, 9019-9038(2013).
[79] A. Poglitsch, D. Weber. Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys., 87, 6373-6378(1987).
[80] K. Shum, Z. Chen, J. Qureshi, C. L. Yu, J. J. Wang. Synthesis and characterization of CsSnI3 thin films. Appl. Phys. Lett., 96, 221903(2010).
[81] K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, T. Okuda. Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Jpn., 71, 127-134(1998).
[82] Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, M. Kishita. Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR. Z. Naturforsch., 46, 240-246(1991).
[83] D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy. Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets. Science, 267, 1473-1476(1995).
[84] D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy. Conducting tin halides with a layered organic-based perovskite structure. Nature, 369, 467-469(1994).
[85] F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, F. Licci. Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films. Cryst. Res. Technol., 40, 1028-1032(2005).
[86] D. B. Mitzi. Thin-film deposition of organic–inorganic hybrid materials. Chem. Mater., 13, 3283-3298(2001).
[87] R. Valiente, F. Rodriguez. Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl64- systems. Phys. Rev. B, 60, 9423-9429(1999).
[88] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 286, 945-947(1999).
[89] P. Zhou, J. E. Drumheller, B. Patyal, R. D. Willet. Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3. Phys. Rev. B, 45, 12365-12376(1992).
[90] M. Era, S. Morimoto, T. Tsutsui, S. Saito. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett., 65, 676-678(1994).
[91] X. Hong, T. Ishihara, A. V. Nurmikko. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B, 45, 6961-6964(1992).
[92] H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S. M. Zakeeruddin. Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology, 19, 424003(2008).
[93] J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, J. Rousset. Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires. Acta Mater., 59, 6790-6800(2011).
[94] J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, F. Güell. Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells. J. Phys. Chem. C, 117, 16349-16356(2013).
[95] J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, G. Boschlo. Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 5, 1902-1906(2013).
[96] J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, A. Parra. Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte. ACS Appl. Mater. Interfaces, 5, 9872-9877(2013).
[97] J. D. Fan, F. Guell, C. Fabrega, A. Shavel, A. Carrete. Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile. Appl. Phys. Lett., 99, 262102(2011).
[98] J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, F. Güell. Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness. J. Alloys Compd., 555, 213-218(2013).
[99] J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, C. Flox. Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness. J. Phys. D, 45, 415301(2012).
[100] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett., 7, 69-74(2007).
[101] J. P. González-Vázquez, V. Morales-Florez, J. A. Anta. How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?. J. Phys. Chem. Lett., 3, 386-393(2012).
[102] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida. Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4. Solid State Commun., 127, 619-623(2003).
[103] C. Silvia, M. Edoardo, F. Paolo, L. Andrea, G. Francesco. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater., 25, 4613-4618(2013).
[104] K. N. Liang, D. B. Mitzi, M. T. Prikas. Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater., 10, 403-411(1998).
[105] P. Langevin. Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys., 28, 433-530(1903).
[106] H. J. Snaith. Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater., 20, 13-19(2010).