• Laser & Optoelectronics Progress
  • Vol. 57, Issue 17, 171406 (2020)
Sixuan He*, Dewei Wu**, and Qiang Miao***
Author Affiliations
  • College of Information and Navigation, Air Force Engineering University, Xi'an, Shaanxi 710077, China
  • show less
    DOI: 10.3788/LOP57.171406 Cite this Article Set citation alerts
    Sixuan He, Dewei Wu, Qiang Miao. Scheme for Optical-Trap-Force-Based Atomic Accelerometer[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171406 Copy Citation Text show less
    Structural diagram of optical-trap-force-based atomic accelerometer
    Fig. 1. Structural diagram of optical-trap-force-based atomic accelerometer
    Working principle of optical-trap-force-based atomic accelerometer
    Fig. 2. Working principle of optical-trap-force-based atomic accelerometer
    Atom in Gaussian beam
    Fig. 3. Atom in Gaussian beam
    Atom in single-axis double-beam optical trap
    Fig. 4. Atom in single-axis double-beam optical trap
    Simulated results of single-beam axial gradient force and scattering force. (a) Axial gradient force; (b) axial scattering force
    Fig. 5. Simulated results of single-beam axial gradient force and scattering force. (a) Axial gradient force; (b) axial scattering force
    Influence of atomic radius on axial force
    Fig. 6. Influence of atomic radius on axial force
    Influence of dielectric refractive index on axial force
    Fig. 7. Influence of dielectric refractive index on axial force
    Influence of laser wavelength on axial force
    Fig. 8. Influence of laser wavelength on axial force
    Influence of beam-waist radius on axial force
    Fig. 9. Influence of beam-waist radius on axial force
    Influence of beam-waist spacing on axial force
    Fig. 10. Influence of beam-waist spacing on axial force
    Sixuan He, Dewei Wu, Qiang Miao. Scheme for Optical-Trap-Force-Based Atomic Accelerometer[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171406
    Download Citation