• Journal of Advanced Dielectrics
  • Vol. 11, Issue 4, 2150018 (2021)
[in Chinese]1、*, [in Chinese]1, [in Chinese]2, [in Chinese]2, [in Chinese]3, [in Chinese]4, [in Chinese]1, [in Chinese]1, and [in Chinese]5
Author Affiliations
  • 1Laboratory for Research in Advanced Materials, Department of Physics, University of Science and Technology Bannu, Township Bannu 28100 Khyber Pakhtunkhwa, Pakistan
  • 2Center for Material Science, Islamia College Peshawar Peshawar, 25120 Khyber Pakhtunkhwa, Pakistan
  • 3Materials Research Laboratory, Department of Physics, University of Peshawar, 25120 KP, Pakistan
  • 4Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, 44000 Islamabad, Pakistan
  • 5Department of Chemistry, University of Science and Technology Bannu 28100 Khyber Pakhtunkhwa, Pakistan
  • show less
    DOI: 10.1142/s2010135x21500181 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High energy storage density with ultra-high efficiency and fast charging–discharging capability of sodium bismuth niobate lead-free ceramics[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150018 Copy Citation Text show less
    References

    [1] J. S. Ho and S. G. Greenbaum, Polymer capacitor dielectrics for high temperature applications, ACS Appl. Mater. Interfaces 10, 29189 (2018).

    [2] Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang and Q. Wang, High-temperature dielectric materials for electrical energy storage, Ann. Rev. Mater. Res. 48, 219 (2018).

    [3] Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers and Y. Liu, Antiferroelectrics for energy storage applications: A review, Adv. Mater. Technol. 3, 1800111 (2018).

    [4] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li and S. Zhang, Perovskite lead-free dielectrics for energy storage applica-tions, Prog. Mater. Sci. 102, 72 (2019).

    [5] X. Hao, J. Zhai and X. Yao, Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films, J. Am. Ceram. Soc. 92, 1133 (2009).

    [6] L. Jin, F. Li and S. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures, J. Am. Ceram. Soc. 97, 1 (2014).

    [7] C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong and G. Wang, High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10) 0.995 O3 antiferroelectric ceramics, J. Appl. Phys. 120, 074107 (2016). 8S. Chao, Ceramic dielectrics for high energy density capacity application, J. Am. Ceram. Soc. 98, 1 (2010).

    [8] Y. Fu, Y. Wang, S. Wang, Z. Gao and C. Xiong, Enhanced break-down strength and energy storage of PVDF-based dielectric composites by incorporating exfoliated mica nanosheets, Polym. Comp. 40, 2088 (2019).

    [9] X. Xu, W. Liu, Y. Li, Y. Wang, Q. Yuan, J. Chen, R. Ma, F. Xiang and H. Wang, Flexible mica films for high-temperature energy storage, J. Materiom. 4, 173 (2018).

    [10] M. Peddigari, H. Palneedi, G.-T. Hwang and J. Ryu, Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications, J. Kor. Ceram. Soc. 56, 1 (2019).

    [11] A. Chauhan, S. Patel, R. Vaish and C. R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors, Materials 8, 8009 (2015).

    [12] B. Rangarajan, B. Jones, T. Shrout and M. Lanagan, Barium/ lead-rich high permittivity glass–ceramics for capacitor applica-tions, J. Am. Ceram. Soc. 90, 784 (2007).

    [13] G. Zhang, D. Zhu, X. Zhang, L. Zhang, J. Yi, B. Xie, Y. Zeng, Q. Li, Q. Wang and S. Jiang, High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method, J. Am.Ceram. Soc. 98, 1175 (2015).

    [14] J. Ge, D. Remiens, X. Dong, Y. Chen, J. Costecalde, F. Gao, F. Cao and G. Wang, Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering, Appl. Phys. Lett. 105, 112908 (2014).

    [15] J. Yi, L. Zhang, B. Xie and S. Jiang, The influence of temperature induced phase transition on the energy storage density of anti-fer-roelectric ceramics, J. Appl. Phys. 118, 124107 (2015).

    [16] Z. Yang, H. Du, L. Jin, Q. Hu, H. Wang, Y. Li, J. Wang, F. Gao and S. Qu, Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched tempera-ture range, J. Mater. Chem. A 7, 27256 (2019).

    [17] Q. Zhang, H. Tong, J. Chen, Y. Lu, T. Yang, X. Yao and Y. He, High recoverable energy density over a wide temperature range in Sr modified (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics with an orthorhombic phase, Appl. Phys. Lett. 109, 262901 (2016).

    [18] G. Burns and F. Dacol, Glassy polarization behavior in ferroelec-tric compounds Pb (Mg13Nb23)O3 and Pb (Zn13Nb23)O3, Solid State Commun. 48, 853 (1983).

    [19] W. Huang, Y. Chen, X. Li, G. Wang, N. Liu, S. Li, M. Zhou and X. Dong, Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics, Appl. Phys. Lett. 113, 203902 (2018).

    [20] D. Zheng, R. Zuo, D. Zhang and Y. Li, Novel BiFeO3–BaTiO3–Ba (Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors, J. Am. Ceram. Soc. 98, 2692 (2015).

    [21] N. Triamnak, R. Yimnirun, J. Pokorny and D. P. Cann, Relaxor char-acteristics of the phase transformation in (1.x) BaTiO3–xBi (Zn1/2Ti1/2) O3 perovskite ceramics, J. Am. Ceram. Soc. 96, 3176 (2013).

    [22] L. Daocheng, D. Shihua, C. Tao and S. Tianxiu, Ferroelectric relaxor behavior of Ba (Ti0.91Zr0.09)O3 Ceramics, Ferroelectrics 385, 6169 (2009).

    [23] S. Kumaragurubaran, T. Nagata, K. Takahashi, S.-G. Ri, Y. Tsunekawa, S. Suzuki and T. Chikyow, BaTiO3 based relaxor ferroelectric epitaxial thin-films for high-temperature operational capacitors, Jap. J. Appl. Phy. 54, 04DH02 (2015).

    [24] T. Wang, L. Jin, C. Li, Q. Hu and X. Wei, Relaxor ferroelectric BaTiO3–Bi (Mg2/3Nb1/3)O3 ceramics for energy storage applica-tion, J. Am. Ceram. Soc. 98, 559 (2015).

    [25] L. Wu, X. Wang and L. Li, Lead-free BaTiO3–Bi (Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage, RSC Adv. 6, 14273 (2016).

    [26] B. Qu, H. Du and Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability, J. Mater. Chem. C 4, 1795 (2016).

    [27] Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei and Z. Xu, Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics, J. Mater. Chem. A 4, 13778 (2016).

    [28] N. Luo, K. Han, F. Zhuo, L. Liu, X. Chen, B. Peng, X. Wang, Q. Feng and Y. Wei, Design for high energy storage density and tem-perature-insensitive lead-free antiferroelectric ceramics, J. Mater. Chem. C 7, 4999 (2019).

    [29] B. Qu, H. Du, Z. Yang and Q. Liu, Large recoverable energy stor-age density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors, J. Am. Ceram. Soc. 100, 1517 (2017).

    [30] Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams and H. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage, J. Mater. Chem. A 5, 17525 (2017).

    [31] L. Zhao, J. Gao, Q. Liu, S. Zhang and J.-F. Li, Silver niobate lead-free antiferroelectric ceramics: Enhancing energy storage density by B-site doping, ACS Appl. Mater. Interfaces 10, 819 (2018).

    [32] Y. Tian, L. Jin, Q. Hu, K. Yu, Y. Zhuang, G. Viola, I. Abrahams, Z. Xu, X. Wei and H. Yan, J. Mater. Chem. A 7, 834 (2019).

    [33] N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou and Y. Wei, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density, J. Mater. Chem. A 7, 14118 (2019).

    [34] J. R.del, K. G. Webber, R. Dittmer, W. Jo, M. Kimura and D. Damjanovic, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc. 35, 1659 (2015).

    [35] D. Zheng and R. Zuo, Enhanced energy storage properties in La (Mg1/2Ti1/2)O3-modified BiFeO3–BaTiO3 lead-free relaxor ferro-electric ceramics within a wide temperature range, J. Eur. Ceram. Soc. 37, 413 (2017).

    [36] J. Roedel and J.-F. Li, Lead-free piezoceramics: Status and per-spectives, MRS Bullet. 43, 576 (2018).

    [37] Y. Li, N. Sun, J. Du, X. Li and X. Hao, Stable energy density of a PMN–PST ceramic from room temperature to its Curie point based on the synergistic effect of diversified energy, J. Mater. Chem. C 7, 7692 (2019).

    [38] F. Wang, C. Ming Leung, Y. Tang, T. Wang and W. Shi, Compo-sition induced structure evolution and large strain response in ter-nary Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3-SrTiO3 solid solution, J. Appl. Phys. 114, 164105 (2013).

    [39] F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi and C. M. Leung, Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions, J. Am. Ceram. Soc. 95, 1955 (2012).

    [40] J. Koruza, B. Malicˇ and M. Kosec, Microstructure evolution during sintering of sodium niobate, J. Am. Ceram. Soc. 94, 4174 (2011).

    [41] T. Wei, K. Liu, P. Fan, D. Lu, B. Ye, C. Zhou, H. Yang, H. Tan, D. Salamon and B. Nan, Novel NaNbO3–Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties, Ceram. Int. l, (2020).

    [42] A. Xie, H. Qi and R. Zuo, Achieving remarkable amplification of energy-storage density in two step sintered NaNbO3–SrTiO3 anti-ferroelectric capacitors through dual adjustment of local hetero-geneity and grain scale, ACS Appl. Mater. Interfaces 12, 19467 (2020).

    [43] Z. Liu, J. Lu, Y. Mao, P. Ren and H. Fan, Energy storage properties of NaNbO3–CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases, J. Eur. Ceram. Soc. 38, 4939 (2018).

    [44] R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang and S. Zhou, A novel lead-free NaNbO3–Bi (Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability, J. Alloys. Compd. 815, 152356 (2020).

    [45] W. Tang, Q. Xu, H. Liu, Z. Yao, H. Hao and M. Cao, High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba (Zr0.2Ti0.8)O3 ternary system with wide operating temperature, J. Mater. Sci.: Mater. Electron. 27, 6526 (2016).

    [46] F. Yan, H. Yang, Y. Lin and T. Wang, Dielectric and ferroelectric properties of SrTiO3–Bi0.5Na0.5TiO3–BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications, Inorg. Chem. 56, 13510 (2017).

    [47] A. Zeb and S. Milne, High temperature dielectric ceramics: A review of temperature-stable high-permittivity perovskites, J. Mater. Sci.: Mater. Electron. 26, 9243 (2015).

    [48] L. Luo, B. Wang, X. Jiang and W. Li, Energy storage properties of (1.x)(Bi0.5 Na0.5)TiO3–xKNbO3 lead-free ceramics, J. Mater. Sci. 49, 1659 (2014).

    [49] B. Wang, L. Luo, X. Jiang, W. Li and H. Chen, Energy-storage properties of (1.x) Bi0.47Na0.47Ba0.06TiO3–xKNbO3 lead-free cera-mics, J. Alloys. Compd. 585, 14 (2014).

    [50] F. Gao, X. Dong, C. Mao, F. Cao and G. Wang, c/a Ratio-dependent energy-storage density in (0.9.x) Bi0.5Na0.5TiO3–xBaTiO3–0.1-K0.5Na0.5NbO3 Ceramics, J. Am. Ceram. Soc. 94, 4162 (2011).

    [51] H. Borkar, V. Singh, B. Singh, M. Tomar, V. Gupta and A. Kumar, Room temperature lead-free relaxor–antiferroelectric electroce-ramics for energy storage applications, RSC Adv. 4, 22840 (2014).

    [52] R. D. Shannon, Revised effective ionic radii and systematic stud-ies of interatomic distances in halides and chalcogenides, Acta Crystallograph. A: Cryst. Phy. Diff. Theor. Gen.crystall. 32, 751 (1976).

    [53] J. Shi, X. Chen, C. Sun, F. Pang, H. Chen, X. Dong, X. Zhou, K. Wang and H. Zhou, Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sin-tering profile, Ceram. Int. 46, 25737 (2020).

    [54] Z. Yang, H. Du, L. Jin, Q. Hu, S. Qu, Z. Yang, Y. Yu, X. Wei and Z. Xu, A new family of sodium niobate-based dielectrics for elec-trical energy storage applications, J. Eur. Ceram. Soc. 39, 2899 (2019).

    [55] Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan and H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater. 29, 1601727 (2017).

    [56] Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei and Z. Xu, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties, Nano Energy 58, 768 (2019).

    [57] L. Yang, X. Kong, Z. Cheng and S. Zhang, Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors, J. Mater. Res. 1, 899 (2019).

    [58] I. Raevski and S. Prosandeev, A new, lead free, family of per-ovskites with a diffuse phase transition: NaNbO3-based solid solu-tions, J. Phy. Chem. Solid. 63, 1939 (2002).

    [59] N. Qu, H. Du and X. Hao, A new strategy to realize high compre-hensive energy storage properties in lead-free bulk ceramics, J. Mater. Chem. C 7, 7993 (2019).

    [60] F. Li, K. Yang, X. Liu, J. Zou, J. Zhai, B. Shen, P. Li, J. Shen, B. Liu and P. Chen, Temperature induced high charge–discharge per-formances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferro-electric ceramics, Scrip. Mater. 141, 15 (2017).

    [61] A. Jain, Y. Wang and H. Guo, Microstructural properties and ultra-high energy storage density in Ba0.9Ca0.1TiO3–NaNb0.85Ta0.15O3 relaxor ceramics, Ceram. Int. 46, 24333 (2020).

    [62] J. Bian, M. Otonicar, M. Spreitzer, D. Vengust and D. Suvorov, Structural evolution, dielectric and energy storage properties of Na(Nb1.xTax)O3 ceramics prepared by spark plasma sintering, J. Eur. Ceram. Soc. 39, 2339 (2019).

    [63] J. Shi, X. Chen, C. Sun, F. Pang, H. Chen, X. Dong, X. Zhou, K. Wang and H. Zhou, Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics, Ceram. Int. 46, 25731 (2020).

    [64] H. Qi, R. Zuo, A. Xie, J. Fu and D. Zhang, Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops, J. Eur. Ceram. Soc. 39, 3703 (2019).

    [65] A. Tian, R. Zuo, H. Qi and M. Shi, Large energy-storage density in transition-metal oxide modified NaNbO3–Bi (Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure, J. Mater. Chem. A 8, 8352 (2020).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. High energy storage density with ultra-high efficiency and fast charging–discharging capability of sodium bismuth niobate lead-free ceramics[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150018
    Download Citation