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Ceramics-based capacitors with excellent energy storage characteristics, fast charging/discharge rate, and high efficiency have 
received significant attention. In this work, Na0.73Bi0.09NbO3 (NBN) ceramics were processed through solid-state sintering route. 
The investigated ceramics were crystallized in a single perovskite phase. Dense microstructure, with small average grain size 
(~0.92 mm) is obtained for the investigated ceramics. A high dielectric constant >1000 accompanied by a low dielectric loss was 
achieved for these ceramics at ambient temperature. A recoverable energy density ~0.92 J/cm3 and ultra-high efficiency of 96.33% 
at 138 kV/cm were obtained at room temperature. Furthermore, a lower discharging time of 0.14 ms was also achieved. This 
 material is a suitable candidate for power pulsed applications.
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1. Introduction

Increased utilization of renewable energy requires improve-
ment in advanced dielectric capacitors’ efficiency and 
energy storage characteristics to broaden its application 
area. Ceramic dielectric capacitors possess high dielectric 
constant, fast charging and discharging capabilities, long 
life cycle, and good mechanical and thermal stabilities at 
high-temperatures.1–4 The critical parameters by which the 
dielectric ceramics are evaluated for energy storage capabil-
ity include high charged energy density (Ws), high recover-
able energy density (Wrec), a high efficiency (η), and a low 
discharge rate. The parameters’ values are computed from 
the respective polarization versus electric field curve, i.e., the 
P–E loop via the following equations.5–7:
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Here, Pmax demonstrates the extreme (maximum) polariza-
tion, Pr the remnant polarization, and E the electric field. 

Figure 1 displays the schematic polarization versus elec-
tric field (P–E) loops of pure NaNbO3 (NN) and partial 
Bi-substituted NN ceramics. This shows that partial Bi sub-
stitution for Na leads to slim polarization versus electric field 
(P–E) loop.

In the past, some linear dielectric materials such as mica 
and TiO2 had been reported to exhibit very high efficiency; 
however, their very low dielectric constant restricted fur-
ther increase in their energy storage density.8–11 Therefore, 
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nonlinear dielectrics, such as antiferroelectrics (AFEs) and 
relaxor ferroelectrics (RFEs) are being investigated for their 
energy storage characteristics as these materials possess 
extensive lattice polarization results with a high dielectric 
constant.12–16 AFEs have anti-parallel adjacent dipoles lead-
ing to a zero net polarization. These materials exhibit high 
Ws due to a double hysteresis loop. Moreover, AFEs possess 
some drawbacks, e.g., first, AFEs usually have low break-
down strength (~10 kV/mm). Second, due to the large hyster-
esis of AFEs, energy is mostly wasted as heat energy, leading 
to a decrease in efficiency, usually less than 80%. It increases 
the material’s temperature due to thermal destruction.17,18

On the other hand, RFEs have a lack of long-range order 
of dipoles resulting in low remnant polarization (Pr) and 
low coercive field (Ec), causing slanted and slim P–E hys-
teresis loops.19,20 These materials also possess low dielectric 
loss allowing these to be suitable candidate materials for 
high energy density applications.21 The relaxor maintains a 

relatively high dielectric polarization difference (ΔP = Pmax − 
Pr), resulting in high Wrec and high efficiency.22

Lead-free RFEs systems such as BaTiO3 (BT)-based,23–26 
K0.5Na0.5NbO3(KNN)-based,27–30 AgNbO3-based,31–34 BiFeO3- 
based,21,35–38 Bi0.5Na0.5TiO3 (BNT)-based,39,40 have been inves- 
tigated for their energy storage potential. KNN-based 
 dielectrics are reported to possess Wrec ~ 4 J/cm3 but with low 
η values (<65%).29 However, the enhancement in energy stor-
age characteristics still lags in that it is very difficult to get a 
high recoverable/discharge energy density (Wrec) and a high 
efficiency (η) simultaneously for a single material.

On the other hand, NaNbO3 (NN) has been investigated due 
to its good piezoelectric properties. NN is known to exhibit a 
relatively lower theoretical density (4.55 g/cm3), thus enabling 
light weight dielectric storage capacitors. Single crystal NN 

has been reported to possess AFE structure,41 but its polycrys-
talline form displays a ferroelectric (FE) nature.42,43 NN dis-
plays coexistence of FE P21ma (Q) and AFE Pbma (P) phases 
at room temperature. It is an easy way to enhance energy 
storage characteristics of NN-based materials via inducing 
relaxor characteristics through substitutions of suitable cat-
ions at the A site and/or B site of its perovskite structure. For 
example, Liu et al., obtained a Wrec ~ 0.55 J/cm3 and η ~ 63% 
for NaNbO3–CaZrO3 system.44 Similarly, in another study, a 
Wrec of 2.20 J/cm3 and η of 82% were reported for the (1−x)- 
NaNbO3–Bi(Zn0.5Ti0.5)O3 (x = 0.09) ceramic system.45 For the 
0.90NaNbO3–0.06BaZrO3–0.04CaZrO3 ceramic system, a 
Wrec of 1.59 J/cm3 and η ~ 30% were obtained.46 Bismuth-
containing lead-free relaxors have been investigated for high 
energy density capacitor applications in recent years.47–52

Therefore, the energy storage characteristics of 
Na0.73Bi0.09NbO3 (NBN) ceramics were investigated for 
pulsed power applications in this study. 

2. Experimental

NBN ceramics were fabricated through a solid-state mix oxide 
sintering process. Na2CO3 (99.9%, Alladin China), Bi2O3 
(99%, Alladin China), Nb2O5 (99.9%, Alladin China) were 
used as the initial ingredients. These materials were weighed in 
stoichiometric ratio sand milling in isopropanol for 24 h with 
zirconia grinding balls to make a slurry. The slurry was dried at 
95 °C in an electric oven overnight and then calcined for 2 h at 
850 °C followed by re-ball milling for 24 h to get fine powders. 
The dried calcined powders were added with 5 wt% of PVA 
liquid solution as a binder and then grinded and sieved. The 
sieved powders were uniaxially pressed to make these pellets 
at a pressure of 100 MPa in a 12 mm diameter steel die using 
a hydraulic pellet press. These pellets were initially heated at 
600 °C for two hours to expel the binder and finally sintered 
at 1275 °C for two hours. The phase constitution of the sin-
tered samples was investigated using X-ray powder diffraction 
(XRD) with CuKa  radiation (Bruker AXS D4 Endeavor).

The dense samples’ surfaces were finely polished and 
etched thermally at 1150°C for 30 min, and Au coated for 

Fig. 1.  Schematic of the polarization versus electric field (P–E) 
loops of (a) pure NaNbO3 (NN) and (b) Bi-substituted NN ceramics. 

(a)
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microstructural examination. For this purpose, a field emis-
sion scanning electron microscope (FESEM) (Jeol JXA 840A, 
Japan) was used.

To measure the dielectric characteristics, the opposite 
faces of ~0.7 mm thick sintered pellet was polished followed 
by silver pasting and heating at 800 °C for two hours. The 
dielectric loss (tand) and dielectric constant (er) of these sam-
ples were determined in the temperature range of 20–500 °C 
at 1 kHz, 10 kHz, 100 kHz, and 1 MHz via a computer cou-
pled LCR meter (E4980A, Agilent made of USA). 

The electric field-dependent polarization at 1 Hz for a sil-
ver pasted 0.3 mm thick, dense sample by a dielectric test 
system (model Premier II, Radiant, USA) at different elec-
tric fields up to its dielectric breakdown strength (DBS). The 
composition’s charging and discharging rates were tested 
with the help of a charge-discharge test system (model 
CPR1701–100, Ploy K) at an electric field of 43 kV/cm, 
65 kV/cm, 87 kV/cm, and 108 kV/cm respectively.

Fig. 3.  (a) Scanning electron microscope image (SEM) and (b) the grain size distribution of NBN ceramics sintered at 1275 °C for 
two hours.
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Fig. 4.  Variation in (a) er and (b) tan d of NBN ceramics with  temperature.

(a) (b)

Fig. 2.  XRD pattern of NBN ceramic recorded at room tempera-
ture, showing single perovskite phase crystallized into orthorhombic 
structure. 
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3. Results and Discussion
The XRD spectrum of NBN ceramic composition sintered 
at 1275 °C for two hours is shown in Fig. 2. Upon indexing 
the pattern with standard data, it could be confirmed that the 
sample comprised a single perovskite phase with no second 
phase formation within the in-house XRD detection limit. 
This shows that Bi3+ has occupied the Na+1 sites in the lattice 
of NN as its ionic radii (rBi

3+ = 1.34 Å) is matching that of the 
Na+1 (rNa+1 = 1.39 Å) for coordination no 12.53 The enlarged 

XRD pattern of NBN ceramic, in the 2θ range of 32.0–32.6° 
shows a single (110) peak at 32.4°, and a slight splitting of 
(200) peak at ~46.4° was also observed, suggesting orthor-
hombic structure of NBN ceramic system.54,55 Furthermore 
the observation of some low intensity peaks marked by arrows 
around 36–40° may show orthorhombic super structure.

Figure 3(a) shows the secondary electron SEM image 
(SEI) of the polished and thermally-etched NBN ceramics 
sample sintered at 1275 °C for two hours. A highly dense 

Fig. 5.  (a)–(i) Room temperature P–E loops at various electric fields for NBN ceramics.
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microstructure with almost no porosity can be observed 
in this image. Nanomeasurer analytical software was used 
to get grain size distribution, based on which the statis-
tical grain size is measured to be ~0.92 mm, as shown in 
Fig. 3(b). It has been reported that several microstructural 
parameters, such as porosity, grain size, second phase for-
mation, and other crystal defects affect the DBS of ceram-
ics.56 The grain size is considered to mainly affect the DBS 
of bulk ceramics.43,57 The smaller grain size of the investi-
gated ceramics is beneficial for DBS and high recoverable 
energy density. The relationship of DBS to grain size was 
studied by Tunkasiri et al., and is given by the following 
equation 57:

1
DBS~ .

G
 (4)

Figures 4(a) and 4(b) display the variation in dielectric 
 constant (er) and dielectric loss (tand) of NBN ceramic with 
temperature at 1 kHz, 10 kHz, 100 kHz, and 1 MHz. The 

er graph shows that the investigated ceramics has a Curie 
temperature below 0 °C, suggesting that NBN belongs to 
the group II NaNbO3-ABO3 relaxors. In group II NN-ABO3 

relaxors, the dielectric maximum temperature (Tm) rapidly 
decreases to a lower temperature region as the ABO3 end 
member’s concentration increases before reaching a critical 
value.58,59 The observed frequency dispersion in er of NBN 
ceramics may evident relaxor characteristics. The dielectric 
constants’ values at room temperature for NBN ceramics at 
1 kHz, 10 kHz, 100 kHz, and 1 MHz were measured to be 
~1100, 1080, 1075, and 1060, respectively, accompanied 
by a low dielectric loss. Upon increasing the temperature, 
the dielectric loss slightly increased but did not exceed 0.05 
up to temperature range of 200 °C at all measured frequen-
cies. The low dielectric loss and the moderate er values are 
also promising for NBN ceramic’s high DBS.4

The room temperature P–E loops of NBN ceramics sin-
tered at 1275 °C for two hours at various electric fields are 
shown in Fig. 5. NBN ceramics display almost linear P–E 
loops at low electric fields (<70 kV/cm). It exhibits a very 
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slight deviation from linearity as the electric field increases 
to 138 kV/cm. The P–E loops of NBN ceramics possess min-
imal Pr, slim characteristic and high breakdown strength. 
Pure NN ceramics has a considerable Pr value showing its 
ferroelectric nature. Thus, Bi for Na’s partial substitution led 
to lower Pr with a slight decrease in Pmax and an increase in 
Pmax–Pr value. The significantly slimmer P–E loops reflect the 
typical relaxor characteristic of NBN ceramics. NBN ceram-
ic’s relaxor characteristic confirms the existence of polar 
nano regions (PNRs) where the alignment and back-switch-
ing response with electric field is faster for micro-domains 
than the macroscopic domains. Such a behavior leads to slim-
mer P–E loops with negligible energy loss.60 The large Pmax 

and nearly zero Pr guarantee large value of Wrec and high η, 
enabling the NBN ceramics to be a good candidate material 
for energy storage capacitor applications.

Figure 6(a) display the variation in Pmax, Pr, and Pmax–Pr’s 
variation of NBN ceramics with applied electric field. The 
value of Pmax increased from 3.81 mC/cm2 to 14.87 mC/cm2 

upon increasing the electric field from 31 kV/cm to the 
breakdown value of 138 kV/cm. On the other hand, a very 
small increase in Pr was observed with an increase in the 
electric field. The Pr’s value increased from 0.096 mC/cm2 

to 0.283 mC/cm2 as the electric field was increased from 31 
kV/cm to the breakdown value of 138 kV/cm. Similarly, 
ΔP (Pmax–Pr) increased from 3.71 mC/cm2 to 14.58 mC/cm2 

with an increase in the electric field from 31 kV/cm to 138 
kV/cm. The significantly low value of Pr and considerable 
values of Pmax and ∆P help in attaining high Wrec and η. 
The values of storage energy density (Ws), the recoverable 
energy density (Wrec) are calculated from the P–E loops of 
NBN ceramics via Eqs. (1) and (2), while the energy density 
loss (Wloss), and the efficiency (η) are determined via Eq. (3) 
and are drawn as a function of electric field, as shown in 
Fig. 5. Upon increasing the electric field from 31 kV/cm 
to 138 kV/cm, both the energy densities, i.e., Ws and Wrec 
of NBN ceramics increased. Furthermore, with increasing 
electric field, a slight increase in the energy density loss 

Fig. 7.  (a) Variation of the discharge current of NBN ceramics with varying electric fields, (b) relation of Wd and discharge time of NBN 
ceramics, (c) variation of discharge current and Wd of NBN ceramics, and (d) variation of discharge time of NBN ceramics with the applied 
electric field.
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accompanied by a slight decrease in the energy storage effi-
ciency was observed. In this study, a high storage energy 
density (Ws) of 0.96 J/cm3, a high recoverable energy den-
sity (Wrec) of 0.92 J/cm3 accompanied by a high efficiency 
(η) of 96.33% at DBS of 138 kV/cm were obtained for NBN 
ceramics.

The discharging rate of the energy by a ceramic capac-
itor is determined via a discharging experiment, where the 
measured discharge time (t0.9) is an important parameter. 
During this time interval (t0.9), a capacitor releases ~90% 
of its  discharge energy. The discharged energy density (Wd) 
and discharged current measured through a load resistance of 
1000 W at different electric fields of 10 kV/cm, 30 kV/cm, 
50  kV/cm, 70 kV/cm, 90 kV/cm, and 110 kV/cm, respec-
tively, for NBN ceramics are shown in Fig. 6.

The discharge energy density (Wd) through this experi-
ment was calculated via the following equation61:

Wd = R∫i(t)2dt/V, (6)

where R is the total load resistance (1000 W), V is the sam-
ple’s volume, and i(t) is the discharged current. The measured 
discharged energy density from the discharged curve via this 
experiment was less than the recoverable energy density cal-
culated from the P–E loop, as it has been performed at a low 
electric field (Fig. 7). However, it may also be slightly lower 
even if measured at the breakdown voltage in this experi-
ment. Two factors are responsible for the lower values of the 
discharged energy density measured in this experiment. The 
first factor is the energy losses through the RC circuit, and the 
second is the variation in the thickness of different samples 
in the two measurements. The Wd value increased from 0.09 
J/cm3 to 0.4 J/cm3 as the electric field was increased from 
10  kV/cm to 110 kV/cm. The value of t0.9 increased from 
0.05 ms to 0.13 ms when the electric field was increased 
from 10 kV/cm to 110 kV/cm. This lower discharging time 

may be may be related to the increased polarization hystere-
sis with increasing electric field.

The electric-field-dependent (10–110 kV/cm) over damped 
discharge current curves of NBN ceramic are shown in Fig. 7, 
in which the current gained the maximum value rapidly in the 
overall discharge duration (<0.14 ms).

Figure 8 shows a comparison of energy storage efficiency 
of NBN ceramics to other NN-based ceramics studied previ-
ously. It is evident that the energy storage efficiency obtained 
for NBN ceramic is higher in this study as compared to the 
previously reported NN-based ceramics.62–66

4. Conclusion

Novel single perovskite phase NBN ceramics were success-
fully synthesized via a solid-state sintering process. In this 
study, good energy storage density (~0.96 J/cm3), good recov-
erable energy density (~0.92 J/cm3), and high energy storage 
efficiency (~96.33%) at 138 kV/cm were obtained for the 
samples investigated in this study. A short pulse discharge 
time (~0.14 ms) was achieved at room temperature. The results 
illustrate that NBN ceramics can be a suitable candidate mate-
rial for energy storage applications as pulsed power ceramic 
capacitors.
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