• Acta Optica Sinica
  • Vol. 36, Issue 10, 1026017 (2016)
Liu Baolei1、*, Yang Zhaohua1, Qu Shaofan1, Zhang Aixin2, and Wu Ling’an2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1026017 Cite this Article Set citation alerts
    Liu Baolei, Yang Zhaohua, Qu Shaofan, Zhang Aixin, Wu Ling’an. Influence of Turbid Media at Different Locations in Computational Ghost Imaging[J]. Acta Optica Sinica, 2016, 36(10): 1026017 Copy Citation Text show less
    References

    [1] Wang L, Ho P P, Liu C, et al. Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate[J]. Science, 1991, 253(5021): 769-771.

    [2] Gayen S K, Alrubaiee M, Alfano R R. Time-gated backscattered ballistic light imaging of objects in turbid water[J]. Applied Physics Letters, 2005, 86(1): 011115.

    [3] Liang J, Ren L, Ju H, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization[J]. Optics Express, 2015, 23(20): 26146-26157.

    [4] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6): 372-377.

    [5] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5): 283-292.

    [6] Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

    [7] Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 2007, 315(5815): 1120-1122.

    [8] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.

    [9] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 1995, 74(18): 3600.

    [10] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

    [11] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18): 183602.

    [12] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 2005, 30(18): 2354-2356.

    [13] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 2014, 39(8): 2314-2317.

    [14] Zhang Minghui, Wei Qing, Shen Xia, et al. Statistical optics based numerical modeling of ghost imaging and its experimental approval[J]. Acta Optica Sinica, 2007, 27(10): 1858-1866.

    [15] Chen Tao, Li Zhengwei, Wang Jianli. Imaging system of single pixel camera based on compressed sensing[J]. Optics and Precision Engineering, 2012, 20(11): 2523-2530.

    [16] Liu Xuefeng, Yao Xuri, Li Mingfei, et al. The role of intensity fluctuations in thermal ghost imaging[J]. Acta Physica Sinica, 2013, 62(18): 184205.

    [17] Chen Chao, Zhao Shengmei. Study on high order difference sifted ghost imaging scheme[J]. Acta Optica Sinica, 2014, 34(6): 0611002.

    [18] Zhang Y, Shi J, Li H, et al. Imaging through aberrating media by computational ghost imaging with incoherent light[J]. Chinese Optics Letters, 2014, 12(1): 011102.

    [19] Han Shensheng, Gong Wenlin, Chen Mingliang, et al. Research progress of GISC lidar[J]. Infrared and Laser Engineering, 2015, 44(9): 2547-2555.

    [20] Zhang Weiliang, Zhang Wenwen, He Ruiqing, et al. Iterative denoising ghost imaging based on local hadamard modulation[J]. Acta Optica Sinica, 2016, 36(4): 0411001.

    [21] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.

    [22] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6.

    [23] Chen M, Li E, Gong W, et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 2013, 3(02): 83.

    [24] Zhang P, Gong W, Shen X, et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 2010, 82(3): 033817.

    [25] Cheng J, Lin J. Unified theory ofthermal ghost imaging and ghost diffraction through turbulent atmosphere[J]. Physical Review A, 2013, 87(4): 043810.

    [26] Gong W, Han S. Correlated imaging in scattering media[J]. Optics Letters, 2011, 36(3): 394-396.

    [27] Bina M, Magatti D, Molteni M, et al. Backscattering differential ghost imaging in turbid media[J]. Physical Review Letters, 2013, 110(8): 083901.

    [28] Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering [J]. Optics Express, 2015, 23(26): 32993-33000.

    [29] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

    [30] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.

    [31] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.

    [32] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. Manhattan: John Wiley & Sons, 2008.

    [33] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations v.s. background subtraction[J]. Optics Express, 2010, 18(6): 5562-5573.

    CLP Journals

    [1] He Zhengquan, Ren Liyong, Zhuang Bin, Xu Chengfang, Zhou Libin. Single Optical Fiber Imaging Technology[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30005

    Liu Baolei, Yang Zhaohua, Qu Shaofan, Zhang Aixin, Wu Ling’an. Influence of Turbid Media at Different Locations in Computational Ghost Imaging[J]. Acta Optica Sinica, 2016, 36(10): 1026017
    Download Citation