• Acta Optica Sinica
  • Vol. 37, Issue 7, 706002 (2017)
Wang Lei1, Hao Shiqi1, Zhang Dai1, and Wang Yong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0706002 Cite this Article Set citation alerts
    Wang Lei, Hao Shiqi, Zhang Dai, Wang Yong. Performance of Adaptive Modulation Coding System for Atmospheric Laser Communication Under Discrete Rate Condition[J]. Acta Optica Sinica, 2017, 37(7): 706002 Copy Citation Text show less
    References

    [1] Majumdar A K, Ricklin J C. Free-space laser communications: Principles and advances[M]. New York: Springer-Verlag New York, 2008.

    [2] Zhang Dai, Hao Shiqi, Zhao Qingsong, et al. Atmospheric laser communication based on depolarization ratio detection[J]. Acta Optica Sinica, 2016, 36(11): 1106008.

    [3] Yang Yufei, Yan Changxiang, Hu Chunhui, et al. Polarization aberration analysis of coherent laser communication system[J]. Acta Optica Sinica, 2016, 36(11): 1106003.

    [4] Ghassemlooy Z, Popoola W, Rajbhandari S. Optical wireless communications: System and channel modelling with Matlab[M]. Boca Raton: CRC Press, 2012.

    [5] Wang Yong, Cao Jianian. Performance analysis of atmospheric laser communication system basing on asymmetrically clipped optical orthogonal frequency division multiplexing intensity modulation and lower density parity check code[J]. Chinese J Lasers, 2010, 37(12): 3031-3036.

    [6] Vetelino F S, Young C Y, Andrews L C. Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence[J]. Applied Optics, 2007, 46(18): 3780-3789.

    [7] Wang Qingquan. Analysis of the influence of atmospheric turbulence on the performance of partially coherent laser communication[D]. Xi’an: Xidian University, 2011.

    [8] Goldsmith A J, Varaiya P P. Capacity of fading channels with channel side information[J]. IEEE Transactions on Information Theory, 1997, 43(6): 1986-1992.

    [9] Goldsmith A J, Chua S G. Variable-rate variable-power MQAM for fadingchannels[J]. IEEE Transactions on Communications, 1997, 45(10): 1218-1230.

    [10] Ma Xiaoping, Sun Jianfeng, Zhi Yanan, et al. Research of DPSK modulation and self-differential homodyne coherent detection technology to overcome the effects of atmospheric turbulence effect in the satellite to ground laser communication[J]. Acta Optica Sinica, 2013, 33(7): 0706017.

    [11] Zhang Yufeng. Adaptive coding for laser communication in atmosphere[D]. Xi’an: Xi’an University of Technology, 2008.

    [12] Fatima K, Muhammad S S, Leitgeb E. Adaptive coded modulation for FSO links[C]. International Symposium on Communication Systems, Networks & Digital Signal Processing, 2012: 12998308.

    [13] Djordjevic I B. Adaptive modulation and coding for free-space optical channels[J]. Journal of Optical Communications and Networking, 2010, 2(5): 221-229.

    [14] Djordjevic I B, Djordjevic G T. On the communication over strong atmospheric turbulence channels by adaptive modulation and coding[J]. Optics Express, 2009, 17(20): 18250-18262.

    [15] Boussemart V, Brandt H, Berioli M. Subset optimization of adaptive coding and modulation schemes for broadband satellite systems[C]. IEEE International Conference on Communications (ICC), 2010: 11411976.

    [16] Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

    Wang Lei, Hao Shiqi, Zhang Dai, Wang Yong. Performance of Adaptive Modulation Coding System for Atmospheric Laser Communication Under Discrete Rate Condition[J]. Acta Optica Sinica, 2017, 37(7): 706002
    Download Citation