• Ultrafast Science
  • Vol. 2, Issue 1, 0002 (2022)
Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai*, Hong-Hua Fang*, and Hong-Bo Sun
DOI: 10.34133/ultrafastscience.0002 Cite this Article
Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai, Hong-Hua Fang, Hong-Bo Sun. Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy[J]. Ultrafast Science, 2022, 2(1): 0002 Copy Citation Text show less
References

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;2(8): Article 17033.

[2] Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z, Wei J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano. 2014;8(10):10396–10402.

[3] Tsai ML, Su SH, Chang JK, Tsai DS, Chen CH, Wu CI, Li LJ, Chen LJ, He JH. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014;8(8):8317–8322.

[4] Hwangbo S, Hu L, Hoang AT, Choi JY, Ahn JH. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat Nanotechnol. 2022;17(5):500–506

[5] Dasgupta A, Gao J, Yang X. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Lett. 2019;19(9):6511–6516.4

[6] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010;10(4):1271–1275.

[7] Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS₂: A new direct-gap semiconductor. Phys Rev Lett. 2010;105(13):Article 136805.

[8] Xiao D, Liu GB, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett. 2012;108(19):Article 196802.

[9] Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K, Taniguchi T, Kis A. Valley-polarized exciton currents in a van der Waals heterostructure. Nat Nanotechnol. 2019;14(12):1104–1109.

[10] Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y, Qiu DY, Ruan W, Mo SK, Hussain Z, Shen ZX, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater. 2014;13(12):1091–1095.

[11] Ross JS, Wu S, Yu H, Ghimire NJ, Jones AM, Aivazian G, Yan J, Mandrus DG, Xiao D, Yao W, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun. 2013;4:1474.

[12] Busschaert S, Reimann R, Cavigelli M, Khelifa R, Jain A, Novotny L. Transition metal dichalcogenide resonators for second harmonic signal enhancement. ACS Photonics 2020;7(9):2482–2488.

[13] Kumar N, Najmaei S, Cui Q, Ceballos Q, Ajayan PM, Lou J, Zhao H. Second harmonic microscopy of monolayer MoS2. Phys Rev B. 2013;87:Article 161403.

[14] Cadiz F, Robert C, Courtade E, Manca M, Martinelli L, Taniguchi T, Watanabe K, Amand T, Rowe ACH, Paget D, et al. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Appl Phys Lett. 2018;112:Article 152106.

[15] Yuan L, Wang T, Zhu T, Zhou M, Huang L. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J Phys Chem Lett. 2017;8(14):3371–3379.

[16] Mouri S, Miyauchi Y, Toh M, Zhao W, Eda G, Matsuda K. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton-exciton annihilation. Phys Rev B. 2014;90(15):Article 155449.

[17] Uddin SZ, Kim H, Lorenzon M, Yeh M, Lien DH, Barnard ES, Htoon H, Weber-Bargioni A, Javey A. Neutral exciton diffusion in monolayer MoS2. ACS Nano. 2020;14(10):13433–13440.

[18] Jauregui LA, Joe AY, Pistunova K, Wild DS, High AA, Zhou Y, Scuri G, De Greve K, Sushko A, Yu CH, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science. 2019;366(6467):870–875.

[19] Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc AB, Ma C, Deng S, Blach D, Pan A, Huang L. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat Mater. 2020;19(6):617–623.

[20] Datta K, Lyu Z, Li Z, Taniguchi T, Watanabe K, Deotare PB. Spatiotemporally controlled room-temperature exciton transport under dynamic strain. Nat Photonics. 2022;16(3):242–247.

[21] Vögele XP, Schuh D, Wegscheider W, Kotthaus JP, Holleitner AW. Density enhanced diffusion of dipolar excitons within a one-dimensional channel. Phys Rev Lett. 2009;103(12):Article 126402.

[22] Rosati R, Perea-Causín R, Brem S, Malic E. Negative effective excitonic diffusion in monolayer transition metal dichalcogenides. Nanoscale. 2020;12(1):356–363.

[23] Peng R, Ripin A, Ye Y, Zhu J, Wu C, Lee S, Li H, Taniguchi T, Watanabe K, Cao T, et al. Long-range transport of 2D excitons with acoustic waves. Nat Commun. 2022;13(1):1334.

[24] Unuchek D, Ciarrocchi A, Avsar A, Watanabe K, Taniguchi T, Kis A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature. 2018;560(7718):340–344.

[25] Ciarrocchi A, Tagarelli F, Avsar A, Kis A. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat Rev Mater. 2022;7(6):449–464.

[26] Qi P, Dai Y, Luo Y, Tao G, Zheng L, Liu D, Zhang T, Zhou J, Shen B, Lin F, et al. Giant excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity. Light Sci Appl. 2022;11(1):176.

[27] Kumar N, Cui Q, Ceballos F, He D, Wang Y, Zhao H. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale. 2014;6(9):4915–4919.

[28] Liu H, Wang C, Zuo Z, Liu D, Luo J. Direct Visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Adv Mater. 2020;32(2):Article e1906540.

[29] Li Z, Lu X, Cordovilla Leon DF, Lyu Z, Xie H, Hou J, Lu Y, Guo X, Kaczmarek A, Taniguchi T, et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano. 2021;15(1):1539–1547.

[30] Kulig M, Zipfel J, Nagler P, Blanter S, Schüller C, Korn T, Paradiso N, Glazov MM, Chernikov A. Exciton diffusion and halo effects in monolayer semiconductors. Phys Rev Lett. 2018;120(20):Article 207401.

[31] Perea-Causín R, Brem S, Rosati R, Jago R, Kulig M, Ziegler JD, Zipfel J, Chernikov A, Malic E. Exciton propagation and halo formation in two-dimensional materials. Nano Lett. 2019;19(10):7317–7323.

[32] Liu Q, Wei K, Tang Y, Xu Z, Cheng X, Jiang T. Visualizing hot-carrier expansion and cascaded transport in ws2 by ultrafast transient absorption microscopy. Adv Sci (Weinh). 2022;9(10):Article e2105746.

[33] Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX. 2021;2(1):Article 4.

[34] Najafi E, Ivanov V, Zewail A, Bernardi M. Super-diffusion of excited carriers in semiconductors. Nat Commun. 2017;8:Article 15177.

[35] Berghuis AM, Raziman TV, Halpin A, Wang S, Curto AG, Rivas JG. Effective negative diffusion of singlet excitons in organic semiconductors. J Phys Chem Lett. 2021;12(4):1360–1366.

[36] Guo Z, Wan Y, Yang M, Snaider J, Zhu K, Huang L. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science. 2017;356(6333):59–62.

[37] Sung J, Schnedermann C, Ni L, Sadhanala A, Chen RYS, Cho C, Priest L, Lim JM, Kim H-K, Monserrat B, et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat Phys. 2019;16(2):171–176.

[38] Block A, Liebel M, Yu R, Spector M, Sivan Y, García de Abajo FJ, van Hulst NF. Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci Adv. 2019;5(5):Article eaav8965.

[39] Segovia M, Xu X. High accuracy ultrafast spatiotemporal pump-probe measurement of electrical thermal transport in thin film gold. Nano Lett. 2021;21(17):7228–7235.

[40] Rawat A, Jena N, Dimple D, De Sarkar A. A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers. J Mater Chem A. 2018;6(18):8693–8704.

[41] Li X, Lin M-W, Basile L, Hus SM, Puretzky AA, Lee J, Kuo Y-C, Chang L-Y, Wang K, Idrobo JC, et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv Mater. 2016;28(37):8240–8247.

[42] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P-H, Eda G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano. 2013;7(1):791–797.

[43] Li Z, Zeng Y, Ou Z, Zhang T, Du R, Wu K, Guo Q, Jiang W, Xu Y, Li T, et al. Defects inducing anomalous exciton kinetics in monolayer WS2. Nano Res. 2021;15(2):1616–1622.

[44] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing HG, Huang L. Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. ACS Nano 2013;7(2):1072–1080.

[45] Chen K, Ghosh R, Meng X, Roy A, Kim J-S, He F, Mason SC, Xu X, Lin J-F, Akinwande D, et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. npj 2D Mater Appl. 2017;1(1):15.

[46] Cui Q, Ceballos F, Kumar N, Zhao H. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 2014;8(3):2970–2976.

[47] Uddin SZ, Higashitarumizu N, Kim H, Yi J, Zhang X, Chrzan D, Javey A. Enhanced neutral exciton diffusion in monolayer WS2 by exciton-exciton annihilation. ACS Nano 2022;16(5):8005–8011.

[48] Kumar N, Cui Q, Ceballos F, He D, Wang Y, Zhao H. Exciton-exciton annihilation in MoSe2 monolayers. Phys Rev B. 2014;89:Article 125427.

[49] Liu H, Wang C, Liu D, Luo J. Neutral and defect-induced exciton annihilation in defective monolayer WS2. Nanoscale. 2019;11(16):7913–7920.

[50] Trovatello C, Katsch F, Borys NJ, Selig M, Yao K, Borrego-Varillas R, Scotognella F, Kriegel I, Yan A, Zettl A, et al. The ultrafast onset of exciton formation in 2D semiconductors. Nat Commun. 2020;11(1):5277.

[51] Li Y, Liu W, Wang Y, Xue Z, Leng YC, Hu A, Yang H, Tan PH, Liu Y, Misawa H. Ultrafast electron cooling and decay in monolayer WS2 revealed by time- and energy-resolved photoemission electron microscopy. Nano Lett 2020;20(5):3747–3753.

[52] Rosati R, Wagner K, Brem S, Perea-Causin R, Ziegler JD, Zipfel J, Taniguchi T, Watanabe K, Chernikov A, Malic E. Non-equilibrium diffusion of dark excitons in atomically thin semiconductors. Nanoscale. 2021;13:19966–19972.

[53] Wagner K, Zipfel J, Rosati R, Wietek E, Ziegler JD, Brem S, Perea-Causín R, Taniguchi T, Watanabe K, Glazov MM, et al. Nonclassical exciton diffusion in monolayer WSe2. Phys Rev Lett. 2021;127(7):Article 076801.

[54] Cordovilla Leon DF, Li Z, Jang SW, Deotare PB. Hot exciton transport in WSe2 monolayers. Phys Rev B. 2019;100:Article 241401.

[55] Sun Z, Ciarrocchi A, Tagarelli F, Marin JFG, Watanabe K, Taniguchi T, Kis A. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nat Photonics. 2022;16(1):79–85.

[56] Ajayi OA, Ardelean JV, Shepard GD, Wang J, Antony A, Taniguchi T, Watanabe K, Heinz TF, Strauf S, Zhu XY, et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 2017;4(3):Article 031011.

[57] Raja A, Waldecker L, Zipfel J, Cho Y, Brem S, Ziegler JD, Kulig M, Taniguchi T, Watanabe K, Malic E, et al. Dielectric disorder in two-dimensional materials. Nat Nanotechnol. 2019;14(9):832–837.

[58] Cadiz F, Courtade E, Robert C, Wang G, Shen Y, Cai H, Taniguchi T, Watanabe K, Carrere H, Lagarde D, et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys Rev X. 2017;7(12):Article 021026.

[59] You Y, Zhang X-X, Berkelbach TC, Hybertsen MS, Reichman DR, Heinz TF. Observation of biexcitons in monolayer WSe2. Nat Phys. 2015;11(6):477–481.

[60] Selig M, Berghäuser G, Raja A, Nagler P, Schuller C, Heinz TF, Korn T, Chernikov A, Malic E, Knorr A. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat Commun. 2016;7(1):13279.

[61] Dey P, Paul J, Wang Z, Stevens CE, Liu C, Romero AH, Shan J, Hilton DJ, Karaiskaj D. Phys Rev Lett. 2016;116(12):Article 127402.

[62] Robert C, Lagarde D, Cadiz F, Wang G, Lassagne B, Amand T, Balocchi A, Renucci P, Tongay S, Urbaszek B, Marie X. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys Rev B. 2016;93(20):Article 205423.

[63] Zhang XX, You Y, Zhao SY, Heinz TF. Experimental evidence for dark excitons in monolayer WSe2. Phys Rev Lett 2015;115(25):Article 257403.

[64] Li X-Z, Aihemaiti N, Fang H-H, Huang G-Y, Zhou Y-K, Wang X-J, Zhang Y, Xing R, Peng S, Bai B, et al. Optical visualization of photoexcitation diffusion in all-inorganic perovskite at high temperature. J Phys Chem Lett. 2022;13(33):7645–7652.

[65] Moody G, Kavir Dass C, Hao K, Chen CH, Li LJ, Singh A, Tran K, Clark G, Xu X, Berghäuser G, et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat Commun. 2015;6:8315.

Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai, Hong-Hua Fang, Hong-Bo Sun. Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy[J]. Ultrafast Science, 2022, 2(1): 0002
Download Citation