• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 064401 (2020)
Yue Ma1、2、*, Jianfei Hua1, Dexiang Liu1, Yunxiao He1、2, Tianliang Zhang1, Jiucheng Chen1, Fan Yang1, Xiaonan Ning1, Zhongshan Yang1, Jie Zhang1、2, Chih-Hao Pai1, Yuqiu Gu2, and Wei Lu1
Author Affiliations
  • 1Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • 2Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • show less
    DOI: 10.1063/5.0016034 Cite this Article
    Yue Ma, Jianfei Hua, Dexiang Liu, Yunxiao He, Tianliang Zhang, Jiucheng Chen, Fan Yang, Xiaonan Ning, Zhongshan Yang, Jie Zhang, Chih-Hao Pai, Yuqiu Gu, Wei Lu. Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source[J]. Matter and Radiation at Extremes, 2020, 5(6): 064401 Copy Citation Text show less
    References

    [1] L. A. Gizzi, L. Labate, P. Tomassini. Inverse Compton scattering x-ray sources. Handbook of X-Ray Imaging: Physics Technology, 309-323(2017).

    [2] N. C. Lopes, D. R. Symes, J. M. Cole et al. High-resolution μCT of a mouse embryo using a compact laser-driven x-ray betatron source. Proc. Natl. Acad. Sci. U. S. A., 115, 6335-6340(2018).

    [3] J. Wenz, K. Khrennikov, S. Schleede et al. Quantitative x-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Commun., 6, 1-6(2015).

    [4] D. W. Holdsworth, M. M. Thornton. Micro-CT in small animal and specimen imaging. Trends Biotechnol., 20, S34-S39(2002).

    [5] C. R. Ward, A. Permana, A. Golab et al. High-resolution three-dimensional imaging of coal using microfocus x-ray computed tomography, with special reference to modes of mineral occurrence. Int. J. Coal Geol., 113, 97-108(2013).

    [6] D. W. Holdsworth, C. T. Badea, M. Drangova et al. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys. Med. Biol., 53, R319(2008).

    [7] D. W. Hutmacher, S. T. Ho. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials, 27, 1362-1376(2006).

    [8] R. Boardman, R. Hale, M. N. Mavrogordato et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data, 2, 150052(2015).

    [9] I. Ghebregziabher, S. Chen, N. D. Powers et al. MeV-energy x rays from inverse Compton scattering with laser-wakefield accelerated electrons. Phys. Rev. Lett., 110, 155003(2013).

    [10] P. Sprangle, A. Ting, E. Esarey et al. Tunable, short pulse hard x-rays from a compact laser synchrotron source. J. Appl. Phys., 72, 5032-5038(1992).

    [11] K.-J. Kim, C. Shank, S. Chattopadhyay. Generation of femtosecond x-rays by 90 Thomson scattering. Nucl. Instrum. Methods Phys. Res., Sect. A, 341, 351-354(1994).

    [12] M. Shin, K. Lee, Y. Cha et al. Relativistic nonlinear Thomson scattering as attosecond x-ray source. Phys. Rev. E, 67, 026502(2003).

    [13] T. Tajima, J. M. Dawson. Laser electron accelerator. Phys. Rev. Lett., 43, 267(1979).

    [14] M. Tzoufras, W. Lu, C. Joshi et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top.-Accel. Beams, 10, 061301(2007).

    [15] F.-J. Decker, C. E. Clayton, I. Blumenfeld et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature, 445, 741(2007).

    [16] E. Brunetti, G. Manahan, R. Shanks et al. Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett., 105, 215007(2010).

    [17] S. Corde, G. Lambert, K. Ta Phuoc et al. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys., 85, 1-48(2013).

    [18] C. Thaury, K. T. Phuoc, S. Corde et al. All-optical Compton gamma-ray source. Nat. Photonics, 6, 308(2012).

    [19] C. Thaury, E. Guillaume, A. Döpp et al. An all-optical Compton source for single-exposure x-ray imaging. Plasma Phys. Controlled Fusion, 58, 034005(2016).

    [20] B. Liesfeld, H. Schwoerer, H. P. Schlenvoigt et al. Thomson-backscattered x rays from laser-accelerated electrons. Phys. Rev. Lett., 96, 014802(2006).

    [21] I. Ghebregziabher, N. D. Powers, G. Golovin et al. Quasi-monoenergetic and tunable x-rays from a laser-driven Compton light source. Nat. Photonics, 8, 28(2014).

    [22] G. Golovin, C. Miller, S. Chen et al. Shielded radiography with a laser-driven MeV-energy x-ray source. Nucl. Instrum. Methods Phys. Res., Sect. B, 366, 217-223(2016).

    [23] G. Golovin, S. Chen, C. Liu et al. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light. Opt. Lett., 39, 4132-4135(2014).

    [24] J. M. Shaw, H.-E. Tsai, X. Wang et al. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror. Phys. Plasmas, 22, 023106(2015).

    [25] J. Wang, J. Feng, C. Zhu et al. Inverse Compton scattering x-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses. Plasma Phys. Controlled Fusion, 61, 024001(2018).

    [26] Y. Li-Xin, P. Chih-Hao, H. Jian-Fei et al. Generating 10–40 MeV high quality monoenergetic electron beams using a 5 TW 60 fs laser at Tsinghua University. Chin. Phys. C, 39, 017001(2015).

    [27] L. Li, K. Kang, Z. Chen et al. A general region-of-interest image reconstruction approach with truncated Hilbert transform. J. X-Ray Sci. Technol., 17, 135-152(2009).

    [28] H. Yu, G. Wang. Compressed sensing based interior tomography. Phys. Med. Biol., 54, 2791(2009).

    [29] J. Yang, M. Jiang, H. Yu et al. High-order total variation minimization for interior tomography. Inverse Probl., 26, 035013(2010).

    [30] R. Ueda, H. Kudo, T. Nemoto. Practical interior tomography with small region piecewise model prior.

    [31] J. Gu, Y. Han, J. C. Ye. Deep learning interior tomography for region-of-interest reconstruction(2017).

    [32] X. Zhang, B. Guo, J. Zhang et al. High-resolution phase-contrast imaging of biological specimens using a stable betatron x-ray source in the multiple-exposure mode. Sci. Rep., 9, 7796(2019).

    [33] L. O. Silva, F. S. Tsung, R. A. Fonseca et al. OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators.

    [34] L. O. Silva, C. Ren, F. S. Tsung et al. Generation of ultra-intense single-cycle laser pulses by using photon deceleration. Proc. Natl. Acad. Sci. U. S. A., 99, 29-32(2002).

    [35] C.-H. Pai, Y.-Y. Chang, L.-C. Ha et al. Generation of intense ultrashort midinfrared pulses by laser-plasma interaction in the bubble regime. Phys. Rev. A, 82, 063804(2010).

    [36] C.-H. Pai, Z. Nie, J. Hua et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nat. Photonics, 12, 489(2018).

    [37] Y. Ma, N. Senabulya, A. E. Hussein et al. Laser-wakefield accelerators for high-resolution x-ray imaging of complex microstructures. Sci. Rep., 9, 3249(2019).

    [38] Z. Zhao, G. J. Gang, J. H. Siewerdsen. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector. Med. Phys., 41, 061909(2014).

    [39] A. C. Riddle, R. N. Bracewell. Inversion of fan-beam scans in radio astronomy. Astrophys. J., 150, 427(1967).

    [40] R. Bender, G. T. Herman, R. Gordon. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol., 29, 471-481(1970).

    [41] E. J. Candès, T. Tao, J. Romberg. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).

    [42] X. Pan, C. M. Kao, E. Y. Sidky. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J. X-Ray Sci. Technol., 14, 119-139(2006).

    [43] M. Chang, Z. Chen, L. Li et al. A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction. J. X-Ray Sci. Technol., 21, 161-176(2013).

    [44] C. Fruhling, W. Yan, G. Golovin et al. High-order multiphoton Thomson scattering. Nat. Photonics, 11, 514(2017).

    [45] K. Satoh, S. Izumi, S. Kamata et al. High energy x-ray computed tomography for industrial applications. IEEE Trans. Nucl. Sci., 40, 158-161(1993).

    [46] L. De Chiffre, J.-P. Kruth, S. Carmignato et al. Industrial applications of computed tomography. CIRP Ann., 63, 655-677(2014).

    [47] A. K. Mondal, C. K. Jadhav, M. R. V. Lakshmi et al. Overview of NDT methods applied on an aero engine turbine rotor blade. Insight-Non-Destr. Test. Cond. Monit., 55, 482-486(2013).

    [48] P. Chen, G. Horton-Smith, T. Ohgaki et al. CAIN: Conglomerat d’ABEL et d’Interactions Non-lineaires. Nucl. Instrum. Methods Phys. Res., Sect. A, 355, 107-110(1995).

    Yue Ma, Jianfei Hua, Dexiang Liu, Yunxiao He, Tianliang Zhang, Jiucheng Chen, Fan Yang, Xiaonan Ning, Zhongshan Yang, Jie Zhang, Chih-Hao Pai, Yuqiu Gu, Wei Lu. Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source[J]. Matter and Radiation at Extremes, 2020, 5(6): 064401
    Download Citation