• Laser & Optoelectronics Progress
  • Vol. 57, Issue 21, 211405 (2020)
Zhou Xian*, Yang Mo, Zhang Wen, Li Bo, and Ming Xingzu
Author Affiliations
  • 湖北文理学院机械工程学院, 湖北 襄阳 441053
  • show less
    DOI: 10.3788/LOP57.211405 Cite this Article Set citation alerts
    Zhou Xian, Yang Mo, Zhang Wen, Li Bo, Ming Xingzu. Micro-Structured Fiber Hydrogen Sensor Based on Nanorod Pt-WO3[J]. Laser & Optoelectronics Progress, 2020, 57(21): 211405 Copy Citation Text show less
    References

    [1] Xiao J K, Song C W, Dong W et al. Synthesis, characterization, and gas sensing properties of WO3 nanoplates[J]. Rare Metal Materials and Engineering, 46, 1241-1244(2017).

    [2] Horprathum M, Srichaiyaperk T, Samransuksamer B et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering[J]. ACS Applied Materials & Interfaces, 6, 22051-22060(2014). http://pubs.acs.org/doi/10.1021/am505127g

    [3] Jolly Bose R, Illyaskutty N, Tan K et al. Hydrogen sensors based on Pt-loaded WO3 sensing layers[J]. EPL, 114, 66002(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=9990821cef2462599bb989ea4b527450

    [4] Caucheteur C, Debliquy M, Lahem D et al. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air[J]. Optics Express, 16, 16854-16859(2008).

    [5] Dai J X, Yang M H, Yang Z et al. Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating[J]. Sensors and Actuators B: Chemical, 190, 657-663(2014).

    [6] Boudiba A, Zhang C, Umek P et al. Sensitive and rapid hydrogen sensors based on Pd-WO3 thick films with different morphologies[J]. International Journal of Hydrogen Energy, 38, 2565-2577(2013). http://www.ingentaconnect.com/content/el/03603199/2013/00000038/00000005/art00058

    [7] Lee S, Lee W S, Lee J K et al. Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods[J]. Applied Physics A, 124, 743-749(2018).

    [8] Wisitsoorat A, Ahmad M Z, Yaacob M H et al. Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering[J]. Sensors and Actuators B: Chemical, 182, 795-801(2013).

    [9] Tseung A C C, Chen K Y. Hydrogen spill-over effect on Pt/WO3 anode catalysts[J]. Catalysis Today, 38, 439-443(1997).

    [10] Ji T H, Hou S F, Du H Y et al. Preparation and characterization of hexagonal WO3 nanobelts[J]. Chinese Journal of Inorganic Chemistry, 25, 818-822(2009).

    [11] Zhou X, Dai Y T, Karanja J M et al. Microstructured FBG hydrogen sensor based on Pt-loaded WO3[J]. Optics Express, 25, 8777-8786(2017).

    [12] Yamaguchi Y, Imamura S, Nishio K et al. Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor[J]. Journal of the Ceramic Society of Japan, 124, 629-633(2016).

    [13] Zhu L F, She J C, Luo J Y et al. Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption[J]. Sensors and Actuators B: Chemical, 153, 354-360(2011).

    [14] Luo J Y, Deng S Z, Tao Y T et al. Evidence of localized water molecules and their role in the gasochromic effect of WO3 nanowire films[J]. Journal of Physical Chemistry C, 113, 15877-15881(2009).

    Zhou Xian, Yang Mo, Zhang Wen, Li Bo, Ming Xingzu. Micro-Structured Fiber Hydrogen Sensor Based on Nanorod Pt-WO3[J]. Laser & Optoelectronics Progress, 2020, 57(21): 211405
    Download Citation