[1] Wang L V. Tutorial on photoacoustic microscopy and computed tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 171-179(2008).
[2] Wang L V, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside[J]. Annual Review of Biomedical Engineering, 16, 155-185(2014).
[3] Biagi E, Brenci M, Fontani S et al. Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis[J]. Optical Review, 4, 481-483(1997).
[4] Wu N, Sun K, Wang X W. Fiber optics photoacoustic generation using gold nanoparticles as target[J]. Proceedings of SPIE, 7981, 798118(2011).
[5] Tian Y, Wu N, Zou X T et al. Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam[J]. Optical Engineering, 52, 065005(2013).
[6] Hsieh B Y, Kim J, Zhu J D et al. A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film[J]. Applied Physics Letters, 106, 021902(2015).
[7] Li J P, Xu J B, Liu X L et al. A novel CNTs array-PDMS composite with anisotropic thermal conductivity for optoacoustic transducer applications[J]. Composites Part B, 196, 108073(2020).
[8] Tian Y, Wu N, Sun K et al. Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material[J]. Journal of Computational Acoustics, 21, 1350002(2013).
[9] Wu N, Tian Y, Zou X T et al. Fiber optic photoacoustic ultrasound generator based on gold nanocomposite[J]. Proceedings of SPIE, 8694, 86940Q(2013).
[10] Zou X T, Wu N, Tian Y et al. Broadband miniature fiber optic ultrasound generator[J]. Optics Express, 22, 18119-18127(2014).
[11] Zhou J C, Wu N, Wang X W. The enhancement of the photoacoustic generation efficiency based on fiber optic ultrasound phased array[J]. Measurement, 146, 668-674(2019).
[12] Buma T, Spisar M, O’Donnell M. High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film[J]. Applied Physics Letters, 79, 548-550(2001).
[13] Kim J, Chang W Y, Lindsey B D et al. Laser-generated-focused ultrasound transducers for microbubble-mediated, dual-excitation sonothrombolysis[C](2016).
[14] Colchester R J, Alles E J, Desjardins A E. A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite[J]. Applied Physics Letters, 114, 113505(2019).
[15] Lee S H, Lee Y, Yoh J J. Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation[J]. Applied Physics Letters, 106, 081911(2015).
[16] Colchester R J, Mosse C A, Bhachu D S et al. Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings[J]. Applied Physics Letters, 104, 173502(2014).
[17] Baac H W, Ok J G, Lee T et al. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation[J]. Nanoscale, 7, 14460-14468(2015).
[18] Noimark S, Colchester R J, Blackburn B J et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging[J]. Advanced Functional Materials, 26, 8390-8396(2016).
[19] Poduval R K, Noimark S, Colchester R J et al. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite[J]. Applied Physics Letters, 110, 223701(2017).
[20] Bodian S, Colchester R J, Macdonald T J et al. CuInS2 quantum dot and polydimethylsiloxane nanocomposites for all-optical ultrasound and photoacoustic imaging[J]. Advanced Materials Interfaces, 8, 2100518(2021).
[21] Yang J M, Favazza C, Chen R et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo[J]. Nature Medicine, 18, 1297-1302(2012).
[22] Vilov S, Arnal B, Hojman E et al. Super-resolution photoacoustic and ultrasound imaging with sparse arrays[J]. Scientific Reports, 10, 4637(2020).
[23] Li Y, Lin R Q, Liu C B et al. In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter[J]. Journal of Biophotonics, 11, e201800034(2018).
[24] Yan Y, Hernandez-Andrade E, Basij M et al. Endocavity ultrasound and photoacoustic system for fetal and maternal imaging: design, implementation, and ex-vivo validation[J]. Journal of Medical Imaging, 8, 066001(2021).
[25] Li G Y, Guo Z D, Chen S L. Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging[J]. Optics Express, 25, 25023-25035(2017).
[26] Chiang K S, Chan H L W, Gardner J L. Detection of high-frequency ultrasound with a polarization-maintaining fiber[J]. Journal of Lightwave Technology, 8, 1221-1227(1990).
[27] Phillips R L. Proposed fiber-optic acoustical probe[J]. Optics Letters, 5, 318-320(1980).
[28] Nelson D F, Kleinman D A, Wecht K W. Vibration-induced modulation of fiberguide transmission[J]. Applied Physics Letters, 30, 94-96(1977).
[29] Sheem S K, Cole J H. Acoustic sensitivity of single-mode optical power dividers[J]. Optics Letters, 4, 322-324(1979).
[30] Chen R, Fernando G F, Butler T et al. A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler[J]. Measurement Science and Technology, 15, 1490-1495(2004).
[31] Staudenraus J, Eisenmenger W. Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water[J]. Ultrasonics, 31, 267-273(1993).
[32] Arvengas A, Davitt K, Caupin F. Fiber optic probe hydrophone for the study of acoustic cavitation in water[J]. The Review of Scientific Instruments, 82, 034904(2011).
[33] Lewin P A, Mu C, Umchid S et al. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz[J]. Ultrasonics, 43, 815-821(2005).
[34] Zhou Y F, Zhai L, Simmons R et al. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone[J]. The Journal of the Acoustical Society of America, 120, 676-685(2006).
[35] Lamela H, Gallego D, Oraevsky A. Optoacoustic imaging using fiber-optic interferometric sensors[J]. Optics Letters, 34, 3695-3697(2009).
[36] Morris P, Hurrell A, Shaw A et al. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America, 125, 3611-3622(2009).
[37] Chen H, Shao Z H, Hao Y X et al. A high-frequency hydrophone using an optical fiber microknot resonator[J]. Optics Communications, 446, 77-83(2019).
[38] Gang T T, Hu M L, Qiao X G et al. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection[J]. Optics and Lasers in Engineering, 88, 60-64(2017).
[39] Spammer S J, Swart P L. Differentiating optical-fiber Mach-Zehnder interferometer[J]. Applied Optics, 34, 2350-2353(1995).
[40] Grün H, Berer T, Burgholzer P et al. Three-dimensional photoacoustic imaging using fiber-based line detectors[J]. Journal of Biomedical Optics, 15, 021306(2010).
[41] Ma X D, Cai Y Q, Fu B et al. Fiber optic-based laser interferometry array for three-dimensional ultrasound sensing[J]. Optics Letters, 44, 5852-5855(2019).
[42] Bucaro J A, Dardy H D, Carome E F. Fiber-optic hydrophone[J]. The Journal of the Acoustical Society of America, 62, 1302-1304(1977).
[43] Wen H, Wiesler D G, Tveten A et al. High-sensitivity fiber-optic ultrasound sensors for medical imaging applications[J]. Ultrasonic Imaging, 20, 103-112(1998).
[44] Berer T, Veres I A, Grün H et al. Characterization of broadband fiber optic line detectors for photoacoustic tomography[J]. Journal of Biophotonics, 5, 518-528(2012).
[45] Bauer-Marschallinger J, Felbermayer K, Berer T. All-optical photoacoustic projection imaging[J]. Biomedical Optics Express, 8, 3938-3951(2017).
[46] Yang L Y, Li Y P, Fang F et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography[J]. Opto-Electronic Advances, 5, 200076(2022).
[47] Eom J, Park S J, Lee B H. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry[J]. Journal of Biomedical Optics, 20, 106007(2015).
[48] Park S J, Eom J, Kim Y H et al. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer[J]. Optics Letters, 39, 4903-4906(2014).
[49] Park S, Rim S, Kim Y et al. Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer[J]. Optics Letters, 44, 2590-2593(2019).
[50] Hochreiner A, Bauer-Marschallinger J, Burgholzer P et al. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification[J]. Biomedical Optics Express, 4, 2322-2331(2013).
[51] Imai M, Ohashi T, Ohtsuka Y. Multimode-optical-fiber Michelson interferometer[J]. Journal of Lightwave Technology, 1, 75-81(1983).
[52] Liu K, Ferguson S M, Measures R M. Fiber-optic interferometric sensor for the detection of acoustic emission within composite materials[J]. Optics Letters, 15, 1255-1257(1990).
[53] Cheng Z M, Zeng J, Liang D K et al. Influence of initial phase modulation on the sensitivity of the optical fiber Sagnac acoustic emission sensor[J]. Applied Sciences, 9, 1018(2019).
[54] Farries M C, Payne D N. Optical fiber switch employing a Sagnac interferometer[J]. Applied Physics Letters, 55, 25-26(1989).
[55] Fomitchov P A, Krishnaswamy S, Achenbach J D. Extrinsic and intrinsic fiberoptic Sagnac ultrasound sensors[J]. Optical Engineering, 39, 1972-1984(2000).
[56] Zhang G, Xi C, Liang Y J et al. Dual-Sagnac optical fiber sensor used in acoustic emission source location[C], 1598-1602(2011).
[57] Zhang E Z, Beard P C. Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection[J]. Proceedings of SPIE, 9323, 932311(2015).
[58] Zhang W L, Chen F Y, Ma W W et al. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor[J]. Optics Express, 26, 11025-11033(2018).
[59] Chen B H, Chen Y W, Ma C. Photothermally tunable Fabry-Pérot fiber interferometer for photoacoustic mesoscopy[J]. Biomedical Optics Express, 11, 2607-2618(2020).
[60] Fischer B. Optical microphone hears ultrasound[J]. Nature Photonics, 10, 356-358(2016).
[61] Alcoz J J, Lee C E, Taylor H F. Embedded fiber-optic Fabry-Perot ultrasound sensor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37, 302-306(1990).
[62] Guggenheim J A, Li J, Allen T J et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 11, 714-719(2017).
[63] Preisser S, Rohringer W, Liu M Y et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging[J]. Biomedical Optics Express, 7, 4171-4186(2016).
[64] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).
[65] Yang Q X, Loock H P, Kozin I et al. Fiber Bragg grating photoacoustic detector for liquid chromatography[J]. The Analyst, 133, 1567-1572(2008).
[66] Wu Q, Okabe Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system[J]. Optics Express, 20, 28353-28362(2012).
[67] Rong Q Z, Shao Z H, Yin X L et al. Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 223-228(2017).
[68] Rosenthal A, Razansky D, Ntziachristos V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating[J]. Optics Letters, 36, 1833-1835(2011).
[69] Wang R, Wu Q, Xiong K et al. Phase-shifted fiber Bragg grating sensing network and its ultrasonic sensing application[J]. IEEE Sensors Journal, 19, 9790-9797(2019).
[70] Liu D, Liang Y Z, Jin L et al. Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications[J]. Optics Letters, 41, 4530-4533(2016).
[71] Zhou X, Cai D, He X L et al. Ultrasound detection at fiber end-facets with surface plasmon resonance cavities[J]. Optics Letters, 43, 775-778(2018).
[72] Archambault J L, Grubb S G. Fiber gratings in lasers and amplifiers[J]. Journal of Lightwave Technology, 15, 1378-1390(1997).
[73] Yelen K, Hickey L M B, Zervas M N. A new design approach for fiber DFB lasers with improved efficiency[J]. IEEE Journal of Quantum Electronics, 40, 711-720(2004).
[74] Guan B O, Tam H Y, Lau S T et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 17, 169-171(2005).
[75] Bai X, Liang Y Z, Sun H J et al. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy[J]. Optics Express, 25, 17616-17626(2017).
[76] Bai X, Qi Y M, Liang Y Z et al. Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor[J]. Biomedical Optics Express, 10, 2504-2512(2019).
[77] Bai X, Ma J, Li X et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 116, 153701(2020).
[78] Liang Y, Jin L, Wang L et al. Fiber-laser-based ultrasound sensor for photoacoustic imaging[J]. Scientific Reports, 7, 40849(2017).
[79] Zhang C, Ling T, Chen S L et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 1, 1093-1098(2014).
[80] Westerveld W J, Mahmud-Ul-Hasan M, Shnaiderman R et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics[J]. Nature Photonics, 15, 341-345(2021).
[81] Zhou X, Cai D, He X L et al. Ultrasound detection with surface plasmon resonance on fiber end-facet[C], SM1C.3(2017).
[82] Speirs R W, Bishop A I. Photoacoustic tomography using a Michelson interferometer with quadrature phase detection[J]. Applied Physics Letters, 103, 053501(2013).
[83] Wang Y, Hu Y X, Peng B Y et al. Complete-noncontact photoacoustic microscopy by detection of initial pressures using a 3×3 coupler-based fiber-optic interferometer[J]. Biomedical Optics Express, 11, 505-516(2019).
[84] Wissmeyer G, Soliman D, Shnaiderman R et al. All-optical optoacoustic microscope based on wideband pulse interferometry[J]. Optics Letters, 41, 1953-1956(2016).
[85] Guan B O, Jin L, Ma J et al. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging[J]. Opto-Electronic Advances, 4, 200081(2021).
[86] Finlay M C, Mosse C A, Colchester R J et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study[J]. Light: Science & Applications, 6, e17103(2017).
[87] Zhang Y, Liang Y, Jin L et al. 125 μm fiber based all-optical ultrasound probes for pulse-echo imaging[J]. Chinese Optics Letters, 17, 070604(2019).
[88] Wu N, Tian Y, Zou X T et al. Study of the compact fiber optic photoacoustic ultrasonic transducer[J]. Proceedings of SPIE, 8345, 83453Z(2012).
[89] Pham K, Noimark S, Huynh N et al. Broadband all-optical plane-wave ultrasound imaging system based on a Fabry-Perot scanner[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 1007-1016(2021).
[90] Xu D C, Yang L Y, Fang F et al. A hybrid coating based fiber probe for ultrasound generation and detection[C], 1-3(2021).
[91] Li C H, Wang L V. Photoacoustic tomography and sensing in biomedicine[J]. Physics in Medicine and Biology, 54, R59-R97(2009).
[92] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).
[93] Zhang E, Laufer J, Beard P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues[J]. Applied Optics, 47, 561-577(2008).
[94] Ma X, Fan M, Cai Y et al. A Fabry-Perot fiber-optic array for photoacoustic imaging[J]. IEEE Transactions on Instrumentation and Measurement, 71, 4501508(2022).
[95] Liang Y Z, Li L X, Li Q et al. Photoacoustic computed tomography by using a multi-angle scanning fiber-laser ultrasound sensor[J]. Optics Express, 28, 8744-8752(2020).
[96] Ma J, He Y, Bai X et al. Flexible microbubble-based Fabry-Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging[J]. Photonics Research, 8, 1558-1565(2020).
[97] Chen Y W, Chen B H, Yu T F et al. Photoacoustic mouse brain imaging using an optical Fabry-Pérot interferometric ultrasound sensor[J]. Frontiers in Neuroscience, 15, 672788(2021).
[98] Deng S Y, Haindl R, Zhang E et al. An optical coherence photoacoustic microscopy system using a fiber optic sensor[J]. APL Photonics, 6, 096103(2021).
[99] Zhou J S, Zhou J Y, Wang W et al. Miniature non-contact photoacoustic probe based on fiber-optic photoacoustic remote sensing microscopy[J]. Optics Letters, 46, 5767-5770(2021).
[100] Liang Y Z, Liu J W, Jin L et al. Fast-scanning photoacoustic microscopy with a side-looking fiber optic ultrasound sensor[J]. Biomedical Optics Express, 9, 5809-5816(2018).
[101] Allen T J, Spurrell J, Berendt M O et al. Ultrafast laser-scanning optical resolution photoacoustic microscopy at up to 2 million A-lines per second[J]. Journal of Biomedical Optics, 23, 126502(2018).
[102] Ansari R, Zhang E Z, Desjardins A E et al. Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance[J]. Optics Letters, 45, 6238-6241(2020).
[103] Miida Y, Matsuura Y. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle[J]. Optics Express, 21, 22023-22033(2013).
[104] Li G Y, Guo Z D, Chen S L. Miniature probe for forward-view wide-field optical-resolution photoacoustic endoscopy[J]. IEEE Sensors Journal, 19, 909-916(2019).
[105] Zhang E Z, Beard P C. A miniature all-optical photoacoustic imaging probe[J]. Proceedings of SPIE, 7899, 291-296(2011).
[106] Ansari R, Zhang E Z, Desjardins A E et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 7, 75(2018).
[107] Cai D, Li G Y, Xia D Q et al. Synthetic aperture focusing technique for photoacoustic endoscopy[J]. Optics Express, 25, 20162-20171(2017).
[108] Wells P T. Ultrasonic imaging of the human body[J]. Reports on Progress in Physics, 62, 671-722(1999).
[109] Wells P N T. Current status and future technical advances of ultrasonic imaging[J]. IEEE Engineering in Medicine and Biology Magazine, 19, 14-20(2000).
[110] Powers J, Kremkau F. Medical ultrasound systems[J]. Interface Focus, 1, 477-489(2011).
[111] Zhang P H, Zhao Y, Li P et al. Research progress in ultrasonic imaging detection technology[J]. Laser & Optoelectronics Progress, 59, 0200003(2022).
[112] Alles E J, Mackle E C, Noimark S et al. Freehand and video-rate all-optical ultrasound imaging[J]. Ultrasonics, 116, 106514(2021).
[113] Lam P M, Lau K T, Ling H Y et al. Acousto-ultrasonic sensing for delaminated GFRP composites using an embedded FBG sensor[J]. Optics and Lasers in Engineering, 47, 1049-1055(2009).
[114] Wei H M, Gong Z, Che J W et al. Optical fiber ultrasonic safety monitoring: a review[J]. Laser & Optoelectronics Progress, 58, 1306018(2021).
[115] Takeda N, Okabe Y, Kuwahara J et al. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing[J]. Composites Science and Technology, 65, 2575-2587(2005).
[116] Betz D C, Thursby G, Culshaw B et al. Identification of structural damage using multifunctional Bragg grating sensors: I. Theory and implementation[J]. Smart Materials and Structures, 15, 1305-1312(2006).
[117] Tsuda H, Lee J R, Guan Y S et al. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor[J]. Optical Fiber Technology, 13, 209-214(2007).
[118] Culshaw B, Thursby G, Betz D et al. The detection of ultrasound using fibre optic sensors[J]. Proceedings of SPIE, 6619, 66192J(2007).
[119] Williams C R S, Hutchinson M N, Hart J D et al. Multichannel fiber laser acoustic emission sensor system for crack detection and location in accelerated fatigue testing of aluminum panels[J]. APL Photonics, 5, 030803(2020).
[120] Wu Q, Wang R, Yu F M et al. Application of an optical fiber sensor for nonlinear ultrasonic evaluation of fatigue crack[J]. IEEE Sensors Journal, 19, 4992-4999(2019).
[121] Yu F M, Okabe Y, Wu Q et al. A novel method of identifying damage types in carbon fiber-reinforced plastic cross-ply laminates based on acoustic emission detection using a fiber-optic sensor[J]. Composites Science and Technology, 135, 116-122(2016).
[122] Yu F M, Wu Q, Okabe Y et al. The identification of damage types in carbon fiber-reinforced plastic cross-ply laminates using a novel fiber-optic acoustic emission sensor[J]. Structural Health Monitoring, 15, 93-103(2016).
[123] Wu Q, Okabe Y, Wo J H. Fiber sensor based on interferometer and Bragg grating for multiparameter detection[J]. IEEE Photonics Technology Letters, 27, 1345-1348(2015).
[124] Kim T Y, Suh K S, Nam J H et al. Acoustic monitoring of HV equipment with optical fiber sensors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 10, 266-270(2003).
[125] Chen H, Xu Y, Qian S et al. Distributed fiber-optic ultrasonic sensor applied in detection of discharging fault of power cable joint[J]. Acta Optica Sinica, 41, 0306001(2021).
[126] Sarkar B, Koley C, Roy N K et al. Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor[J]. Measurement, 74, 255-267(2015).
[127] Wang Y, Li X M, Gao Y et al. Partial discharge ultrasound detection using the Sagnac interferometer system[J]. Sensors, 18, 1425(2018).
[128] Gao C F, Wang W, Song S et al. Localization of partial discharge in transformer oil using Fabry-Pérot optical fiber sensor array[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 2279-2286(2018).
[129] Ma G M, Zhou H Y, Shi C et al. Distributed partial discharge detection in a power transformer based on phase-shifted FBG[J]. IEEE Sensors Journal, 18, 2788-2795(2018).
[130] Ma G M, Zhou H Y, Zhang M et al. A high sensitivity optical fiber sensor for GIS partial discharge detection[J]. IEEE Sensors Journal, 19, 9235-9243(2019).
[131] Jiang J, Wang K, Wu X R et al. Characteristics of the propagation of partial discharge ultrasonic signals on a transformer wall based on Sagnac interference[J]. Plasma Science and Technology, 22, 024002(2020).
[132] Chen Z, Zhang L, Liu H H et al. 3D printing technique-improved phase-sensitive OTDR for breakdown discharge detection of gas-insulated switchgear[J]. Sensors, 20, 1045(2020).
[133] Li H Y, Lü J M, Li D L et al. MEMS-on-fiber ultrasonic sensor with two resonant frequencies for partial discharges detection[J]. Optics Express, 28, 18431-18439(2020).