• Photonics Research
  • Vol. 7, Issue 2, 137 (2019)
Hongbo Lu1、2、7、*, Cheng Wei1, Qiang Zhang1, Miao Xu1、2, Yunsheng Ding2, Guobing Zhang1、2, Jun Zhu1、2, Kang Xie3, Xiaojuan Zhang4, Zhijia Hu3、4、5、6、*, and Longzhen Qiu1、2
Author Affiliations
  • 1Key Laboratory of Special Display Technology, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
  • 2Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
  • 3School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
  • 4Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
  • 5State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621000, China
  • 6e-mail: zhijiahu@hfut.edu.cn
  • 7e-mail: bozhilu@hfut.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000137 Cite this Article Set citation alerts
    Hongbo Lu, Cheng Wei, Qiang Zhang, Miao Xu, Yunsheng Ding, Guobing Zhang, Jun Zhu, Kang Xie, Xiaojuan Zhang, Zhijia Hu, Longzhen Qiu. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal[J]. Photonics Research, 2019, 7(2): 137 Copy Citation Text show less
    References

    [1] A. D. Ford, S. M. Morris, H. J. Coles. Photonics and lasing in liquid crystals. Mater. Today, 9, 36-42(2006).

    [2] H. Coles, S. Morris. Liquid-crystal lasers. Nat. Photonics, 4, 676-685(2010).

    [3] M. Mitov. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater., 24, 6260-6276(2012).

    [4] I. Muševič. Liquid-crystal micro-photonics. Liq. Cryst. Rev., 4, 1-34(2016).

    [5] V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett., 23, 1707-1709(1998).

    [6] Y. Zhou, Y. Huang, S.-T. Wu. Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector. Opt. Express, 14, 3906-3916(2006).

    [7] M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, G. Konishi. Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers. Adv. Mater., 22, 4473-4478(2010).

    [8] P. V. Shibaev, V. I. Kopp, A. Z. Genack. Photonic materials based on mixtures of cholesteric liquid crystals with polymers. J. Phys. Chem. B, 107, 6961-6964(2003).

    [9] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, M. Pinol. Widely tunable ultraviolet-visible liquid crystal laser. Appl. Phys. Lett., 86, 051107(2005).

    [10] K. Sonoyama, Y. Takanishi, K. Ishikawa, H. Takezoe. Position-sensitive cholesteric liquid crystal dye laser covering a full visible range. Jpn. J. Appl. Phys., 46, L874-L876(2007).

    [11] S. Furumi, N. Tamaoki. Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser. Adv. Mater., 22, 886-891(2010).

    [12] K. Funamoto, M. Ozaki, K. Yoshino. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn. J. Appl. Phys., 42, L1523-L1525(2003).

    [13] J. Schmidtke, S. Kniesel, H. Finkelmann. Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules, 38, 1357-1363(2005).

    [14] A. Varanytsia, H. Nagai, K. Urayama, P. Palffy-Muhoray. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci. Rep., 5, 17739(2015).

    [15] T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, P. C. Yang. Cholesteric liquid crystal laser with wide tuning capability. Appl. Phys. Lett., 86, 161120(2005).

    [16] H. K. S. Finkelmann, A. Munoz, P. Palffy-Muhoray, B. Taheri. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater., 13, 1069-1072(2001).

    [17] Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, D. Shen. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion. J. Mater. Chem. C, 3, 2462-2470(2015).

    [18] B.-W. Liu, Z.-G. Zheng, X.-C. Chen, D. Shen. Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal. Opt. Mater. Express, 3, 519-526(2013).

    [19] M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, K. Yoshino. Electro-tunable liquid-crystal laser. Adv. Mater., 15, 974-977(2003).

    [20] H. Yu, B. Y. Tang, J. Li, L. Li. Electrically tunable lasers made from electro-optically active photonics band gap materials. Opt. Express, 13, 7243-7249(2005).

    [21] B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, S. O. Kang. Electrically controllable omnidirectional laser emission from a helical-polymer network composite film. Adv. Mater., 21, 771-775(2009).

    [22] Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, M. Ozaki. Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network. Adv. Mater., 23, 5498-5501(2011).

    [23] M. Wang, C. Zou, J. Sun, L. Zhang, L. Wang, J. Xiao, F. Li, P. Song, H. Yang. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity. Adv. Funct. Mater., 27, 1702261(2017).

    [24] S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl. Phys. Lett., 82, 16-18(2003).

    [25] G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, G. N. Price. Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett., 94, 063903(2005).

    [26] S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, N. M. Shtykov. Photonics of liquid-crystal structures: a review. Crystallogr. Rep., 56, 622-649(2011).

    [27] J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, P. Palffy-Muhoray. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc. Natl. Acad. Sci. USA, 113, 12925-12928(2016).

    [28] G. H. Heilmeier, L. A. Zanoni. Guest-host interactions in nematic liquid crystals. A new electro-optic effect. Appl. Phys. Lett., 13, 91-92(1968).

    [29] V. G. Rumyantsev, A. V. Ivashchenko, V. M. Muratov, V. T. Lazareva, E. K. Prudnikova, L. M. Blinov. Dyes with negative dichroism for liquid crystal displays based on the guest-host effect. Mol. Cryst. Liq. Cryst., 94, 205-212(2007).

    [30] Q. Liu, Y. Yuan, I. I. Smalyukh. Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles. Nano Lett., 14, 4071-4077(2014).

    [31] K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, T. J. White. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photon., 1, 1033-1041(2014).

    [32] H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, D.-K. Yang. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter, 11, 1208-1213(2015).

    [33] K. M. Lee, V. P. Tondiglia, T. J. White. Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals. Soft Matter, 12, 1256-1261(2016).

    [34] S. M. Wood, J. A. J. Fells, S. J. Elston, S. M. Morris. Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold. Macromolecules, 49, 8643-8652(2016).

    [35] K. M. Lee, V. P. Tondiglia, N. P. Godman, C. M. Middleton, T. J. White. Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals. Soft Matter, 13, 5842-5848(2017).

    [36] M. Yu, L. Wang, H. Nemati, H. Yang, T. Bunning, D.-K. Yang. Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals. J. Polym. Sci. B, 55, 835-846(2017).

    CLP Journals

    [1] Wenyu Du, Zhijia Hu, Zhigang Cao, Guosheng Zhang, Yan Wang, Weidong Luo, Benli Yu. Review of random laser research (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201052

    [2] Ya-Hao Ge, Yi-Mei Lan, Xing-Rui Li, Yu-Wei Shan, Yu-Jie Yang, Sen-Sen Li, Chaoyong Yang, Lu-Jian Chen. Polymerized cholesteric liquid crystal microdisks generated by centrifugal microfluidics towards tunable laser emissions [Invited][J]. Chinese Optics Letters, 2020, 18(8): 080006

    Hongbo Lu, Cheng Wei, Qiang Zhang, Miao Xu, Yunsheng Ding, Guobing Zhang, Jun Zhu, Kang Xie, Xiaojuan Zhang, Zhijia Hu, Longzhen Qiu. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal[J]. Photonics Research, 2019, 7(2): 137
    Download Citation