• Journal of Semiconductors
  • Vol. 41, Issue 5, 051201 (2020)
Yurui Wang, Mei Zhang, Ke Xiao, Renxing Lin, Xin Luo, Qiaolei Han, and Hairen Tan
Author Affiliations
  • National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1088/1674-4926/41/5/051201 Cite this Article
    Yurui Wang, Mei Zhang, Ke Xiao, Renxing Lin, Xin Luo, Qiaolei Han, Hairen Tan. Recent progress in developing efficient monolithic all-perovskite tandem solar cells[J]. Journal of Semiconductors, 2020, 41(5): 051201 Copy Citation Text show less
    References

    [1] E H Jung, N J Jeon, E Y Park et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 567, 511(2019).

    [2] D Luo, W Yang, Z Wang et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360, 1442(2018).

    [3] H Tan, A Jain, O Voznyy et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722(2017).

    [4] H Tsai, W Nie, J C Blancon et al. High-efficiency two-dimensional Ruddlesden –Popper perovskite solar cells. Nature, 536, 312(2016).

    [5] W S Yang, J H Noh, N J Jeon et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234(2015).

    [6] P Zhu, S Gu, X Luo et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 10, 1903083(2020).

    [7] Y Zhao, H Tan, H Yuan et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 9, 1607(2018).

    [8] Q Han, Y Wei, R Lin et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb –Sn low-bandgap perovskite solar cells. Sci Bull, 64, 1399(2019).

    [9] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [10]

    [11] M A Green, E D Dunlop, D H Levi et al. Solar cell efficiency tables (version 54). Prog Photovolt Res Appl, 27, 565(2019).

    [12] W Shockley, H J Queisser. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 32, 510(1961).

    [13] J F Geisz, M A Steiner, N Jain et al. Building a six-junction inverted metamorphic concentrator solar cell. IEEE J Photovolt, 8, 626(2017).

    [14] F Meillaud, A Shah, C Droz et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 90, 2952(2006).

    [15] M A Contreras, L M Mansfield, B Egaas et al. Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog Photovolt Res Appl, 20, 843(2012).

    [16] L Meng, Y Zhang, X Wan et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361, 1094(2018).

    [17] X Che, Y Li, Y Qu et al. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat Energy, 3, 422(2018).

    [18] P Cheng, G Li, X Zhan et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 12, 131(2018).

    [19] J Yuan, Y Zhang, L Zhou et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140(2019).

    [20] M Anaya, G Lozano, M E Calvo et al. ABX3 perovskites for tandem solar cells. Joule, 1, 769(2017).

    [21] R E Beal, D J Slotcavage, T Leijtens et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 7, 746(2016).

    [22] Y Yu, C Wang, C R Grice et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett, 2, 1177(2017).

    [23] T Leijtens, K A Bush, R Prasanna et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 3, 828(2018).

    [24] G E Eperon, S D Stranks, C Menelaou et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 7, 982(2014).

    [25] G Xu, P Bi, S Wang et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 28, 1804427(2018).

    [26] M Wei, K Xiao, G Walters et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater, 1907058(2020).

    [27] C Li, Z Song, D Zhao et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv Energy Mater, 9, 1803135(2019).

    [28] X Liu, Z Yang, C C Chueh et al. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A, 4, 17939(2016).

    [29] Z Yang, A Rajagopal, C C Chueh et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater, 28, 8990(2016).

    [30] B Zhao, M Abdi-Jalebi, M Tabachnyk et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv Mater, 29, 1604744(2017).

    [31] H L Zhu, W C H Choy. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2, 1800146(2018).

    [32] K A Bush, A F Palmstrom, J Y Zhengshan et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2, 17009(2017).

    [33] J Werner, L Barraud, A Walter et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett, 1, 474(2016).

    [34] B Chen, J Y Zhengshan, S Manzoor et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 4, 850(2020).

    [35] J Werner, C H Weng, A Walter et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm 2. J Phys Chem Lett, 7, 161(2016).

    [36] T Duong, Y Wu, H Shen et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 7, 1700228(2017).

    [37] S Pisoni, F Fu, T Feurer et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J Mater Chem A, 5, 13639(2017).

    [38] H Shen, J Peng, D Jacobs et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ Sci, 11, 394(2018).

    [39] T Todorov, T Gershon, O Gunawan et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 105, 173902(2014).

    [40] Q Han, Y T Hsieh, L Meng et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science, 361, 904(2018).

    [41] F Fu, T Feurer, T P Weiss et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy, 2, 1690(2016).

    [42] C D Bailie, M G Christoforo, J P Mailoa et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci, 8, 956(2015).

    [43] Q Zeng, L Liu, Z Xiao et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 64, 885(2019).

    [44] U Saha, M K Alam. Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. RSC Adv, 7, 4806(2017).

    [45] Y Li, H Hu, B Chen et al. Solution-processed perovskite-kesterite reflective tandem solar cells. Sol Energy, 155, 35(2017).

    [46] H Lee, C Lee. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv Energy Mater, 8, 1702197(2018).

    [47] K Tanabe. A Review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies, 2, 504(2009).

    [48] T Ameri, N Li, C J Brabec. Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci, 6, 2390(2013).

    [49] Z J Yu, M Leilaeioun, Z Holman. Selecting tandem partners for silicon solar cells. Nat Energy, 1, 16137(2016).

    [50] I Celik, A B Philips, Z Song et al. Energy payback time (EPBT) and energy return on energy invested (eroi) of perovskite tandem photovoltaic solar cells. IEEE J Photovoltaics, 8, 305(2017).

    [51] J Y Zhengshan, J V Carpenter, Z C Holman. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat Energy, 3, 747(2018).

    [52] J H Heo, S H Im. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater, 28, 5121(2016).

    [53] G E Eperon, T Leijtens, K A Bush et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 354, 861(2016).

    [54] R Lin, K Xiao, Z Qin et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy, 4, 864(2019).

    [55] J Werner, B Niesen, C Ballif. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview. Adv Mater Interfaces, 5, 1700731(2018).

    [56] G E Eperon, M T Hörantner, H J Snaith. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat Rev Chem, 1, 0095(2017).

    [57] G L Araújo, A Martí. Absolute limiting efficiencies for photovoltaic energy conversion. Sol Energy Mater Sol Cells, 33, 213(1994).

    [58] M T Hörantner, T Leijtens, M E Ziffer et al. The potential of multijunction perovskite solar cells. ACS Energy Lett, 2, 2506(2017).

    [59] E L Unger, L Kegelmann, K Suchan et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 5, 11401(2017).

    [60] J H Noh, S H Im, J H Heo et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 13, 1764(2013).

    [61] W Chen, J Zhang, G Xu et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 30, 1800855(2018).

    [62] W Chen, H Chen, G Xu et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 3, 191(2019).

    [63] A F Palmstrom, G E Eperon, T Leijtens et al. Enabling flexible all-perovskite tandem solar cells. Joule, 3, 2193(2019).

    [64] M Saliba, T Matsui, K Domanski et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354, 206(2016).

    [65] Y H Park, I Jeong, S Bae et al. Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv Funct Mater, 27, 1605988(2017).

    [66] P Yadav, M I Dar, N Arora et al. The role of rubidium in multiple-cation-based high-efficiency perovskite solar cells. Adv Mater, 29, 1701077(2017).

    [67] M Zhang, J S Yun, Q Ma et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett, 2, 438(2017).

    [68] W Liao, D Zhao, Y Yu et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc, 138, 12360(2016).

    [69] J Im, C C Stoumpos, H Jin et al. Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3. J Phys Chem Lett, 6, 3503(2015).

    [70] R Prasanna, A Gold-Parker, T Leijtens et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc, 139, 11117(2017).

    [71] Z Yang, C C Chueh, P W Liang et al. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 22, 328(2016).

    [72] D Forgács, L Gil-Escrig, D Pérez-Del-Rey et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater, 7, 1602121(2017).

    [73] A Rajagopal, Z Yang, S B Jo et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 29, 1702140(2017).

    [74] F Jiang, T Liu, B Luo et al. A two-terminal perovskite/perovskite tandem solar cell. J Mater Chem A, 4, 1208(2016).

    [75] T Leijtens, R Prasanna, K A Bush et al. Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain Energy Fuels, 2, 2450(2018).

    [76] D Zhao, C Chen, C Wang et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy, 3, 1093(2018).

    [77] J Tong, Z Song, D H Kim et al. Carrier lifetimes of > 1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 364, 475(2019).

    [78] R Prasanna, T Leijtens, S P Dunfield et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat Energy, 4, 939(2019).

    [79] R Sheng, M T Hörantner, Z Wang et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. J Phys Chem C, 121, 27256(2017).

    [80] J Ávila, C Momblona, P Boix et al. High voltage vacuum-deposited CH3NH3Pb3–CH3NH3PbI3 tandem solar cells. Energy Environ Sci, 11, 3292(2018).

    [81] Y Yan. All-perovskite tandem solar cell showing unprecedentedly high open-circuit voltage. Joule, 2, 2206(2018).

    [82] D Zhao, C Wang, Z Song et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett, 3, 305(2018).

    [83] B Abdollahi, I M Hossain, M Jakoby et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv Energy Mater, 10, 1902583(2020).

    [84] I L Braly, R J Stoddard, A Rajagopal et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett, 2, 1841(2017).

    [85] R J Stoddard, A Rajagopal, R L Palmer et al. Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett, 3, 1261(2018).

    [86] B Saparov, D B Mitzi. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 116, 4558(2016).

    [87] D Zhao, Y Yu, C Wang et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy, 2, 17018(2017).

    [88] F Hao, C C Stoumpos, P Guo et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 137, 11445(2015).

    [89] Y Zhou, M Yang, W Wu et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A, 3, 8178(2015).

    [90] Z Yang, Z Yu, H Wei et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat Commun, 10, 4498(2019).

    Yurui Wang, Mei Zhang, Ke Xiao, Renxing Lin, Xin Luo, Qiaolei Han, Hairen Tan. Recent progress in developing efficient monolithic all-perovskite tandem solar cells[J]. Journal of Semiconductors, 2020, 41(5): 051201
    Download Citation