• Chinese Journal of Lasers
  • Vol. 48, Issue 20, 2006001 (2021)
Min Li, Hongqian Mu*, Muguang Wang, Xinhang Wei, and Xiangshuai Guan
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/CJL202148.2006001 Cite this Article Set citation alerts
    Min Li, Hongqian Mu, Muguang Wang, Xinhang Wei, Xiangshuai Guan. Arbitrary Waveform Generation Based on Simple Design of Linearly Chirped Fiber Bragg Grating and Frequency-to-Time Mapping[J]. Chinese Journal of Lasers, 2021, 48(20): 2006001 Copy Citation Text show less
    References

    [1] Yao J P. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 284, 3723-3736(2011).

    [2] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 4, 760-766(2010).

    [3] Yuan J, Ning T G, Li J et al. Investigation on optical wavelength conversion based on SPM using triangular-shaped pulses[J]. Optik, 127, 3049-3054(2016).

    [4] Kashiwagi K, Hasegawa A, Kurokawa T. Efficient wavelength conversion using sawtooth pulse generated by optical pulse synthesizer[C]. //Nonlinear Optics 2013, July 21-26, 2013, Kohala Coast, Hawaii, United States, NW3A.2(2013).

    [5] Yang C S, Tang H L, Jiang H et al. Beat-frequency matching for multi-target based on improved trapezoid wave with FMCW Radar[C]. //2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), September 14-16, 2011, Xi’an, China., 1-4(2011).

    [6] Huh J, Azaña J. Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping[J]. Optics Express, 23, 27751-27762(2015).

    [7] Ashrafi R, Li M, LaRochelle S et al. Superluminal space-to-time mapping in grating-assisted co-directional couplers[J]. Optics Express, 21, 6249-6256(2013).

    [8] Kirchner M S, Diddams S A. Grism-based pulse shaper for line-by-line control of more than 600 optical frequency comb lines[J]. Optics Letters, 35, 3264-3266(2010).

    [9] Li M, Han Y C, Pan S L et al. Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system[J]. IEEE Photonics Technology Letters, 23, 715-717(2011).

    [10] Peng H T, Wang J, Ma C et al. Arbitrary waveform generation of enhanced high-order harmonics based on injection locking[J]. Acta Optica Sinica, 40, 0419001(2020).

    [11] He Y T, Jiang Y, Zi Y J et al. Frequency doubled triangular waveform generation based on injection locking and time-domain synthesis[J]. Chinese Journal of Lasers, 45, 0101005(2018).

    [12] Sun Y Y, Bai G F, Hu L. Triangular photonic microwave-signal generation based on dual-parallel Mach-Zehnder modulator and influence factors of its similarity[J]. Laser & Optoelectronics Progress, 56, 110602(2019).

    [13] Zhang K, Zhao S H, Jiang W et al. Reconfigurable triangular and square waveforms generation using optical polarization division modulation[J]. Laser & Optoelectronics Progress, 57, 170603(2020).

    [14] Li M, Azaña J, Zhu N H et al. Recent progresses on optical arbitrary waveform generation[J]. Frontiers of Optoelectronics, 7, 359-375(2014).

    [15] Mu H Q, Wang M G, Li M. Power-efficient FCC-compliant UWB generator using polarization-maintaining FBG-based spectral shaper and incoherent wavelength-to-time mapping[J]. Optical Fiber Technology, 50, 271-276(2019).

    [16] Jason C, Yan H, Bahram J. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE Photonics Technology Letters, 15, 581-583(2003).

    [17] He H J, Shao L Y, Wang C et al. Arbitrary spectral synthesis and waveform generation with HiBi fiber loop mirrors[J]. IEEE Photonics Technology Letters, 30, 943-946(2018).

    [18] Wang C, Yao J P. Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation[J]. IEEE Photonics Technology Letters, 21, 793-795(2009).

    [19] Wang C, Yao J P. Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating[J]. Journal of Lightwave Technology, 28, 1652-1660(2010).

    [20] Wang C, Yao J P. Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating[J]. IEEE Photonics Technology Letters, 24, 1493-1495(2012).

    [21] Wang C, Yao J P. Fiber Bragg gratings for microwave photonics subsystems[J]. Optics Express, 21, 22868-22884(2013).

    [22] Abtahi M, Simard A D, Doucet S et al. Characterization of a linearly chirped FBG under local temperature variations for spectral shaping applications[J]. Journal of Lightwave Technology, 29, 750-755(2011).

    [23] Al-Muraeb A, Abdel-Aty-Zohdy H. Optimal design of short fiber Bragg grating using bat algorithm with adaptive position update[J]. IEEE Photonics Journal, 8, 1-11(2016).

    [24] Torres-Company V, Leaird D E, Weiner A M. Dispersion requirements in coherent frequency-to-time mapping[J]. Optics Express, 19, 24718-24729(2011).

    [25] Ibsen M, Durkin M K, Zervas M N et al. Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation[J]. IEEE Photonics Technology Letters, 12, 498-500(2000).

    Min Li, Hongqian Mu, Muguang Wang, Xinhang Wei, Xiangshuai Guan. Arbitrary Waveform Generation Based on Simple Design of Linearly Chirped Fiber Bragg Grating and Frequency-to-Time Mapping[J]. Chinese Journal of Lasers, 2021, 48(20): 2006001
    Download Citation