• Chinese Journal of Lasers
  • Vol. 50, Issue 24, 2402103 (2023)
Yuqi Zhou1, Lihong Chen1, Jianfeng Wang1, Zhu Li2, Zhan Mu2, and Xiaohong Zhan1、*
Author Affiliations
  • 1College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu , China
  • 2Xi’an Gangyan Special Alloy Co., Ltd., Xi’an 710000, Shaanxi , China
  • show less
    DOI: 10.3788/CJL230861 Cite this Article Set citation alerts
    Yuqi Zhou, Lihong Chen, Jianfeng Wang, Zhu Li, Zhan Mu, Xiaohong Zhan. Research on Microstructure Evolution and Tensile Properties of Laser Welded Joints of Domestic Invar Alloy[J]. Chinese Journal of Lasers, 2023, 50(24): 2402103 Copy Citation Text show less
    References

    [1] Huang G H, Zhang D M, Yan D X et al. Manufacturing technology research on invar steel mould[J]. Advances in Aeronautical Science and Engineering, 2, 485-488(2011).

    [2] Soutis C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 41, 143-151(2005).

    [3] Lagarec K, Rancourt D G, Bose S K et al. Observation of a composition-controlled high-moment/low-moment transition in the face centered cubic Fe-Ni system: Invar effect is an expansion, not a contraction[J]. Journal of Magnetism and Magnetic Materials, 236, 107-130(2001).

    [4] Liu Y. Study on MIG automatic welding technology of civil aircraft Invar die steel[D](2015).

    [5] Ling W L. Study on welding parametric modeling and process optimization of typical structure of Invar alloy mold[D](2020).

    [6] Wang Q, Dong Y W, Jiang Z H et al. Enhancing low thermal expansion behavior and strength via induced Zr-rich intermetallic phase in Fe-36Ni Invar alloy[J]. Materials & Design, 226, 111644(2023).

    [7] Jiao G H, Fang X W, Chen X M et al. The origin of low thermal expansion coefficient and enhanced tensile properties of Invar alloy fabricated by directed energy deposition[J]. Journal of Materials Processing Technology, 317, 117994(2023).

    [8] Rao X X, Ru Y D, Guo F M et al. Abnormal strain evolution of austenite upon martensitic transformation in FeNiCo alloy with invar effect: an in situ study[J]. Scripta Materialia, 220, 114942(2022).

    [9] Wu D J, Zhang T W, Ma G Y et al. Influence of welding parameters on the morphology of Fe-Ni alloy with continuous wave YAG laser[J]. Chinese Journal of Lasers, 40, 0303003(2013).

    [10] Wu D J, Yin B, Zhang W Z et al. Nd ∶YAG laser beam welding Invar 36 alloy[J]. Chinese Journal of Lasers, 35, 1773-1777(2008).

    [11] Li G, Gao M, Chen C et al. Characterisation comparison of laser and laser–arc hybrid welding of Invar 36 alloy[J]. Science and Technology of Welding and Joining, 19, 30-37(2014).

    [12] Zhao J Y, Wang J Y, Kang X F et al. Effect of beam oscillation and oscillating frequency induced heat accumulation on microstructure and mechanical property in laser welding of Invar alloy[J]. Optics & Laser Technology, 158, 108831(2023).

    [13] Li Y F, Wang F, Liu H B et al. Effect of surface roughness on the performances of laser-welded Invar 36 alloy joints[J]. Optics & Laser Technology, 162, 109307(2023).

    [14] Liu H B, Xuan Y, Yang J. Research status and prospect of invar alloy welding technology[J]. Aeronautical Manufacturing Technology, 63, 83-88, 102(2020).

    [15] Cheng H, Zhou L G, Liu J et al. Effect of heat input on microstructure and mechanical properties of laser welded joint of Inconel 617 nickel-based superalloy[J]. Journal of Materials Engineering, 51, 113-121(2023).

    [16] Zhang T W. Effect of laser welding process on weld quality of Fe-Ni alloy[D](2013).

    [17] StJohn D H, Prasad A, Easton M A et al. The contribution of constitutional supercooling to nucleation and grain formation[J]. Metallurgical and Materials Transactions A, 46, 4868-4885(2015).

    [18] Jiang Z G, Chen X, Li H et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy[J]. Materials & Design, 186, 108195(2020).

    [19] Hao K D, Gong M C, Pi Y M et al. Effect of Ni content on rolling toughness of laser-arc hybrid welded martensitic stainless steel[J]. Journal of Materials Processing Technology, 251, 127-137(2018).

    [20] Cui S W, Shi Y H, Sun K et al. Microstructure evolution and mechanical properties of keyhole deep penetration TIG welds of S32101 duplex stainless steel[J]. Materials Science and Engineering: A, 709, 214-222(2018).

    [21] Chen D, Liu T, Zhao Y Q et al. Effect of grain size on mechanical properties of double laser-beam bilateral synchronous welding joint[J]. Chinese Journal of Lasers, 48, 1002120(2021).

    [22] Fang H, Xue H, Tang Q Y et al. Dendrite coarsening and secondary arm migration in the mushy zone during directional solidification: experiment and simulation[J]. Acta Metallurgica Sinica, 55, 664-672(2019).

    [23] Ren W J, Lu F G, Yang R J et al. A comparative study on fiber laser and CO2 laser welding of Inconel 617[J]. Materials & Design, 76, 207-214(2015).

    Yuqi Zhou, Lihong Chen, Jianfeng Wang, Zhu Li, Zhan Mu, Xiaohong Zhan. Research on Microstructure Evolution and Tensile Properties of Laser Welded Joints of Domestic Invar Alloy[J]. Chinese Journal of Lasers, 2023, 50(24): 2402103
    Download Citation