• Photonics Research
  • Vol. 6, Issue 4, 244 (2018)
Amir Ghobadi1、2、5, Turkan Gamze Ulusoy Ghobadi3, Ali Kemal Okyay2、3, and Ekmel Ozbay1、2、3、4、*
Author Affiliations
  • 1NANOTAM-Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
  • 2Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
  • 3UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
  • 4Department of Physics, Bilkent University, 06800 Ankara, Turkey
  • 5e-mail: amir@ee.bilkent.edu.tr
  • show less
    DOI: 10.1364/PRJ.6.000244 Cite this Article Set citation alerts
    Amir Ghobadi, Turkan Gamze Ulusoy Ghobadi, Ali Kemal Okyay, Ekmel Ozbay. Emerging photoluminescence from defective vanadium diselenide nanosheets[J]. Photonics Research, 2018, 6(4): 244 Copy Citation Text show less
    References

    [1] A. K. Geim. Graphene: status and prospects. Science, 324, 1530-1534(2009).

    [2] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906-3924(2010).

    [3] M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon: a study of graphene. Chem. Rev., 110, 132-145(2010).

    [4] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [5] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).

    [6] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8, 1102-1120(2014).

    [7] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan. Van der Waals heterostructures and devices. Nat. Rev. Mater., 1, 16042(2016).

    [8] C. Luo, C. Wang, X. Wu, J. Zhang, J. Chu. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small, 13, 1604259(2017).

    [9] M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdo, T. Mueller. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett., 14, 4785-4791(2014).

    [10] M. Bernardi, M. Palummo, C. Grossman, R. Scienti. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett., 13, 3664-3670(2013).

    [11] N. Balis, E. Stratakis, E. Kymakis. Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Mater. Today, 19, 580-594(2016).

    [12] O. Lopez-sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 8, 497-501(2013).

    [13] D. Kang, M. Kim, J. Shim, J. Jeon, H. Park, W. Jung, H. Yu, C. Pang, S. Lee, J. Park. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater., 25, 4219-4227(2015).

    [14] D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, C. Park. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun., 6, 8063(2015).

    [15] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater., 14, 301-306(2015).

    [16] O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta, I. Morral, A. Radenovic, A. Kis. Light generation and harvesting in a van der Waals heterostructure. ACS Nano, 8, 3042-3048(2014).

    [17] D. M. Andoshe, J. M. Jeon, S. Y. Kim, H. W. Jang. Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett., 11, 323-335(2015).

    [18] M. Pumera, Z. Sofer, A. Ambrosi. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A, 2, 8981-8987(2014).

    [19] Y. Hou, X. Zhuang, X. Feng. Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods, 1, 1700090(2017).

    [20] W. Peng, Y. Li, F. Zhang, G. Zhang, X. Fan. Roles of two-dimensional transition metal dichalcogenides as cocatalysts in photocatalytic hydrogen evolution and environmental remediation. Ind. Eng. Chem. Res., 56, 4611-4626(2017).

    [21] Y. Wan, H. Zhang, K. Zhang, Y. Wang, B. Sheng, X. Wang, L. Dai. Large-scale synthesis and systematic photoluminescence properties of monolayer MoS2 on fused silica. ACS Appl. Mater. Interfaces, 8, 18570-18576(2016).

    [22] K. Mak, C. Lee, J. Hone, J. Shan, T. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [23] Z. He, X. Wang, W. Xu, Y. Zhou, Y. Sheng, Y. Rong, J. M. Smith, J. H. Warner. Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing. ACS Nano, 10, 5847-5855(2016).

    [24] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V. H. Crespi, H. Terrones, M. Terrones. Extraordinary room-temperature photoluminescence in WS2 triangular monolayers. Nano Lett., 13, 3447-3454(2013).

    [25] Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, Z. Ni. Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C, 121, 12294-12299(2017).

    [26] C. Ruppert, O. B. Aslan, T. F. Heinz. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 14, 6231-6236(2014).

    [27] I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, A. F. Morpurgo. Indirect-to-direct band-gap crossover in few-layer MoTe2. Nano Lett., 15, 2336-2342(2015).

    [28] G. Froehlicher, E. Lorchat, S. Berciaud. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2). Phys. Rev. B, 94, 085429(2016).

    [29] H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, Y. Shi. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 10, 1454-1461(2016).

    [30] N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, T. Yu. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano, 8, 11320-11329(2014).

    [31] S. Mouri, Y. Miyauchi, K. Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 13, 5944-5948(2013).

    [32] B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, S. Lodha. Exciton emission intensity modulation of monolayer MoS2 via Au plasmon coupling. Sci. Rep., 7, 41175(2017).

    [33] H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, X. Duan. Growth of alloy MoS2xSe2(1-x)nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc., 136, 3756-3759(2014).

    [34] M. D. Tran, J. H. Kim, Y. H. Lee. Tailoring photoluminescence of monolayer transition metal dichalcogenides. Curr. Appl. Phys., 16, 1159-1174(2016).

    [35] S. Susarla, A. Kutana, J. A. Hachtel, V. Kochat, A. Apte, R. Vajtai, J. C. Idrobo, B. I. Yakobson, C. S. Tiwary, P. M. Ajayan. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater., 29, 1702457(2017).

    [36] Z. Wang, Z. Dong, Y. Gu, Y. H. Chang, L. Zhang, L. J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C. W. Qiu, A. T. S. Wee. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun., 7, 11283(2016).

    [37] E. Palacios, S. Park, S. Butun, L. Lauhon, K. Aydin. Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna. Appl. Phys. Lett., 111, 031101(2017).

    [38] S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, J. Vučković, A. Majumdar, X. Xu. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater., 1, 011001(2014).

    [39] X. Gan, Y. Gao, K. F. Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. Trusheim, F. Hatami, T. F. Heinz, J. Hone, D. Englund. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett., 103, 181119(2013).

    [40] J. Lee, J. Huang, B. G. Sumpter, M. Yoon. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Mater., 4, 021016(2017).

    [41] Z. Lin, A. Mccreary, U. Wurstbauer, B. Miller, J. S. Ponraj, Z. Xu, Z. Lin, B. R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater., 3, 022002(2016).

    [42] P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. Lu, B. Yu, H. Terrones. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 9, 1520-1527(2015).

    [43] V. Carozo, Y. Wang, K. Fujisawa, B. R. Carvalho, A. Mccreary, S. Feng, Z. Lin, C. Zhou, N. Perea-López, A. L. Elías, B. Kabius, V. H. Crespi, M. Terrones. Optical identification of sulfur vacancies: bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv., 3, e1602813(2017).

    [44] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys., 17, 2850-2858(2015).

    [45] H. Y. Jeong, S. Y. Lee, T. H. Ly, G. H. Han, H. Kim, H. Nam, Z. Jiong, B. G. Shin, S. J. Yun, J. Kim, U. J. Kim, S. Hwang, Y. H. Lee. Visualizing point defects in transition-metal dichalcogenides using optical microscopy. ACS Nano, 10, 770-777(2016).

    [46] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 8, 5738-5745(2014).

    [47] Z. Zhang, J. Niu, P. Yang, Y. Gong, Q. Ji, J. Shi, Q. Fang, S. Jiang, H. Li, X. Zhou, L. Gu, X. Wu, Y. Zhang. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater., 29, 1702359(2017).

    [48] H. Zhang, L. Sun, Y. Dai, C. Tong, X. Han. Tunable electronic and magnetic properties from structure phase transition of layered vanadium diselenide. J. Wuhan Univ. Technol. Mater. Sci. Ed., 32, 574-578(2017).

    [49] Z. I. Popov, N. S. Mikhaleva, M. A. Visotin, A. A. Kuzubov, S. Entani, H. Naramoto, S. Sakai, P. B. Sorokin, P. V. Avramov. The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures. Phys. Chem. Chem. Phys., 18, 33047-33052(2016).

    [50] Á. Pásztor, A. Scarfato, C. Barreteau, E. Giannini, C. Renner. Dimensional crossover of the charge density wave transition in thin exfoliated VSe2. 2D Mater., 4, 041005(2017).

    [51] W. Tong, S. Gong, X. Wan, C. Duan. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 7, 13612(2016).

    [52] H.-R. Fuh, B. Yan, S.-C. Wu, C. Felser, C.-R. Chang. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys., 18, 113038(2016).

    [53] K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu. Ultrathin nanosheets of vanadium diselenide: a metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew. Chem., 52, 10477-10481(2013).

    [54] M. Yan, X. Pan, P. Wang, F. Chen, L. He, G. Jiang, J. Wang, J. Z. Liu, X. Xu, X. Liao, J. Yang, L. Mai. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett., 17, 4109-4115(2017).

    [55] W. Zhao, B. Dong, Z. Guo, G. Su, R. Gao, W. Wang, L. Cao. Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. Chem. Commun., 52, 9228-9231(2016).

    [56] X. Chia, A. Ambrosi, P. Lazar, Z. Sofer, M. Pumera. Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A, 4, 14241-14253(2016).

    [57] Y. Wang, Z. Sofer, J. Luxa, M. Pumera. Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Adv. Mater. Interfaces, 3, 1600433(2016).

    [58] T. G. Ulusoy Ghobadi, B. Patil, F. Karadas, A. K. Okyay, E. Yilmaz. Catalytic properties of vanadium diselenide: a comprehensive study on its electrocatalytic performance in alkaline, neutral, and acidic media. ACS Omega, 2, 8319-8329(2017).

    [59] S. He, H. Lin, L. Qin, Z. Mao, H. He, Y. Li, Q. Li. Synthesis, stability, and intrinsic photocatalytic properties of vanadium diselenide. J. Mater. Chem. A, 5, 2163-2171(2017).

    [60] X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li, M. A. T. Nguyen, M. Terrones, T. E. Mallouk. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett., 15, 5956-5960(2015).

    [61] T. P. Nguyen, W. Sohn, J. H. Oh, H. W. Jang, S. Y. Kim. Size-dependent properties of two-dimensional MoS2 and WS2. J. Phys. Chem. C, 120, 10078-10085(2016).

    [62] V. Štengl, J. Henych. Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale, 5, 3387-3394(2013).

    [63] M. M. Bernal, L. Álvarez, E. Giovanelli, A. Arnáiz, L. Ruiz-González, S. Casado, D. Granados, A. M. Pizarro, A. Castellanos-Gomez, E. M. Pérez. Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation. 2D Mater., 3, 035014(2016).

    [64] C. Y. Luan, S. Xie, C. Ma, S. Wang, Y. Kong, M. Xu. Elucidation of luminescent mechanisms of size-controllable MoSe2 quantum dots. Appl. Phys. Lett., 111, 073105(2017).

    [65] K. S. Nikonov, M. N. Brekhovskikh, A. V. Egorysheva, T. K. Menshchikova, V. A. Fedorov. Chemical vapor transport growth of vanadium (IV) selenide and vanadium (IV) telluride single crystals. Inorg. Mater., 53, 1126-1130(2017).

    [66] A. Gustinetti, G. Campagnoli, H. Mutka, P. Molinie, R. H. Friend, D. Jerome, A. Nader, A. Leblanc. The characterisation of VSe2: a study of the thermal expansion. J. Phys. C, 14, L609-L615(1981).

    [67] E. Spiecker, A. K. Schmid, A. M. Minor, U. Dahmen, S. Hollensteiner, W. Ja. Self-assembled nanofold network formation on layered crystal surfaces during metal intercalation. Phys. Rev. Lett., 96, 086401(2006).

    [68] N. D. Boscher, C. S. Blackman, C. J. Carmalt, I. P. Parkin, A. G. Prieto. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci., 253, 6041-6046(2007).

    [69] T. Oztas, H. S. Sen, E. Durgun, B. Ortaç. Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment. J. Phys. Chem. C, 118, 30120-30126(2014).

    [70] H. G. Baldoví, M. Latorre-Sánchez, I. Esteve-Adell, A. Khan, A. M. Asiri, S. A. Kosa, H. Garcia. Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation. J. Nanopart. Res., 18, 240(2016).

    [71] L. Zhou, H. Zhang, H. Bao, G. Liu, Y. Li, W. Cai. Onion-structured spherical MoS2 nanoparticles induced by laser ablation in water and liquid droplets’ radial solidification/oriented growth mechanism. J. Phys. Chem. C, 121, 23233-23239(2017).

    [72] S. R. M. Santiago, T. N. Lin, C. T. Yuan, J. L. Shen, H. Y. Huang, C. A. J. Lin. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation. Phys. Chem. Chem. Phys., 18, 22599-22605(2016).

    [73] T. G. Ulusoy Ghobadi, A. Ghobadi, T. Okyay, K. Topalli, A. K. Okyay. Controlling luminescent silicon nanoparticle emission produced by nanosecond pulsed laser ablation: role of interface defect states and crystallinity phase. RSC Adv., 6, 112520(2016).

    [74] C. Guo, J. Pan, H. Li, T. Lin, P. Liu, C. Song, D. Wang, G. Mu, X. Lai, H. Zhang, W. Zhou, M. Chen, F. Huang. Observation of superconductivity in 1T′-MoS2 nanosheets. J. Mater. Chem. C, 5, 10855-10860(2017).

    [75] S. Jiménez Sandoval, D. Yang, R. Frindt, J. Irwin. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B, 44, 3955-3962(1991).

    [76] C. Lin, A. Posadas, T. Hadamek, A. A. Demkov. Final-state effect on X-ray photoelectron spectrum of nominally d1 and n-doped d0 transition-metal oxides. Phys. Rev. B, 92, 035110(2015).

    [77] D. Sethi, N. Jada, A. Tiwari, S. Ramasamy, T. Dash, S. Pandey. Photocatalytic destruction of Escherichia coli in water by V2O5/TiO2. J. Photochem. Photobiol. B, 144, 68-74(2015).

    [78] A. Ghobadi, H. I. Yavuz, T. G. Ulusoy, K. C. Icli, M. Ozenbas, A. K. Okyay. Enhanced performance of nanowire-based all-TiO2 solar cells using subnanometer-thick atomic layer deposited ZnO embedded layer. Electrochim. Acta, 157, 23-30(2015).

    [79] T. G. Ulusoy, A. Ghobadi, A. K. Okyay. Surface engineered angstrom thick ZnO-sheathed TiO2 nanowires as photoanodes for performance enhanced dye-sensitized solar cells. J. Mater. Chem. A, 2, 16867-16876(2014).

    [80] E. New, I. Hancox, L. A. Rochford, M. Walker, A. Dearden, C. F. Mcconville, T. S. Jones. Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. J. Mater. Chem. A, 2, 19201-19207(2014).

    [81] M. A. Morris, M. A. Morris, N. Petkov, J. D. Holmes. Resist-substrate interface tailoring for generating high-density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. Vac. Sci. Technol. B, 30, 041602(2012).

    Amir Ghobadi, Turkan Gamze Ulusoy Ghobadi, Ali Kemal Okyay, Ekmel Ozbay. Emerging photoluminescence from defective vanadium diselenide nanosheets[J]. Photonics Research, 2018, 6(4): 244
    Download Citation