• Laser & Optoelectronics Progress
  • Vol. 55, Issue 2, 022401 (2018)
Rong Lin, Wenchao Qian, Yunpeng Shang, Shouyu Wang, Cheng Liu, Weiying Qian, and Yan Kong*
Author Affiliations
  • School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    DOI: 10.3788/LOP55.022401 Cite this Article Set citation alerts
    Rong Lin, Wenchao Qian, Yunpeng Shang, Shouyu Wang, Cheng Liu, Weiying Qian, Yan Kong. Dual-Channel All-Optical Switch Based on Plasmonic Demultiplexer Structure[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022401 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmons subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006). http://europepmc.org/abstract/MED/16410515

    [3] Wu T S, Liu Y M, Yu Z Y. et al. The sensing characteristics of plasmonic waveguide with a ring resonator[J]. Optics Express, 22, 7669-7677(2014). http://www.opticsinfobase.org/abstract.cfm?uri=oe-22-7-7669

    [4] Lu Q J, Wu G Z, Chen D R et al. Optimal design and application of surface plasmon polaritions microdis[J]. Acta Optica Sinica, 32, 0714002(2012).

    [5] Hao J M, Wang J, Liu X L. et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 96, 251104(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5494743

    [6] Lin X S, Huang X G. Tooth-shaped plasminic waveguide filters with nanometeric sizes[J]. Optics Letters, 33, 2874-2876(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000019000001000049000001&idtype=cvips&gifs=Yes

    [7] Wei L D, Wang H Q, Yang H Y et al. Optical transmission characteristics of embedded metal strip based on metal-insulator-metal waveguide[J]. Laser & Optoelectronics Progress, 53, 092401(2016).

    [8] Fang N, Lee H, Sun C. et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005). http://www.jstor.org/stable/3841300

    [9] Liu Z W, Lee H, Xiong Y. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007). http://www.jstor.org/stable/20035846

    [10] Xiao X, Zhang Z Y, He M Y et al. Optimized design of silver superlens for the surface plasmon polaritons interference lithography based on backside-exposure technique[J]. Acta Optica Sinica, 31, 1222007(2011).

    [11] Zhao C L, Wang J Y, Wu X F et al. Focusing surface plasmons to multiple focal spots with a launching diffraction grating[J]. Applied Physics Letters, 94, 111105(2009). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4837142

    [12] Tan X H, Cai W, Ji Z C et al. Light-induced gold nanoparticle grating and excitation of surface plasmon polaritons[J]. Chinese Journal of Lasers, 41, 1201011(2014).

    [13] Liu J S, Pala R A, Afshinmanesh F. et al. A submicron plasmonic dichroic splitter[J]. Nature Communications, 2, 525(2011). http://www.nature.com/ncomms/journal/v2/n11/abs/ncomms1537.html

    [14] Xu A, Liu D, Lu F. et al. Compact plasmoinc dichroic splitting with high splitting ratio based on a cascaded-grating structure[J]. Journal of the Optical Society America B, 31, 387-392(2014). http://www.opticsinfobase.org/abstract.cfm?URI=josab-31-2-387

    [15] Tanemura T, Balram K C. Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler[J]. Nano Letters, 11, 2693-2698(2011). http://pubs.acs.org/doi/abs/10.1021/nl200938h

    [16] Lee S Y, Lee I M, Park J. et al. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons[J]. Physical Review Letters, 108, 213907(2012). http://europepmc.org/abstract/MED/23003258

    [17] Rodríguez-Fortuno F J, Marino G, Ginzburg P et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes[J]. Science, 340, 328-330(2013). http://europepmc.org/abstract/med/23599487

    [18] Lin J, Mueller J P, Wang Q. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 340, 331-334(2013). http://www.ncbi.nlm.nih.gov/pubmed/23599488

    [19] Mei S T, Huang K, Liu H. et al. On-chip discrimination of orbital angular momentum of light with plasmonic naoslits[J]. Nanoscale, 8, 2227-2233(2016). http://europepmc.org/abstract/MED/26742094

    [20] Liu T, Wang S Y. Orbital angular momentum-controlled tunable directional plasmonic coupler[J]. IEEE Photonics Technology Letters, 28, 91-94(2016). http://ieeexplore.ieee.org/document/7289367/

    [21] Wang S Y, Liu T. Four-port polarization and topological charge controlled directional plasmonic coupler[J]. IEEE Photonics Technology Letters, 28, 2391-2394(2016). http://ieeexplore.ieee.org/document/7527619/

    [22] Liu T, Wang S Y. Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex[J]. Journal of Applied Physics, 120, 123108(2016). http://scitation.aip.org/content/aip/journal/jap/120/12/10.1063/1.4963189

    [23] Min C J, Wang P, Jiao X J. et al. Beam manipulating by metallic nano-optic lens containing nonlinear media[J]. Optics Express, 15, 9541-9546(2007). http://www.ncbi.nlm.nih.gov/pubmed/19547302

    [24] Lu H, Liu X M, Wang L R et al. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator[J]. Optics Express, 19, 2910-2915(2011). http://www.ncbi.nlm.nih.gov/pubmed/21369113

    [25] Tian M, Lu P, Chen L et al. All-optical switching in MIM waveguide resonator with an outer portion smooth bend structure containing nonlinear optical materials[J]. Optics Communications, 285, 4562-4566(2012). http://www.sciencedirect.com/science/article/pii/S0030401812006414

    [26] Liu H Q, Ren G B, Gao Y X et al. Ultrafast and low-power all-optical switch based on asymmetry electromagnetically induced transparency in MIM waveguide containing Kerr material[J]. Optics Communications, 353, 189-194(2015). http://www.sciencedirect.com/science/article/pii/S0030401815003934

    [27] Economou E N. Surface plasmons in thin films[J]. Physial Review, 182, 539-554(1969). http://prola.aps.org/abstract/PR/v182/i2/p539_1

    [28] Tao J, Wang Q J, Hu B. et al. Tunable subwavelength terahertz plasmonic stub waveguide filters[J]. IEEE Transactions on Nanotechnology, 12, 1191-1197(2013). http://ieeexplore.ieee.org/document/6626633/

    [29] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972). http://www.tandfonline.com/servlet/linkout?suffix=CIT0019&dbid=16&doi=10.1080%2F09205071.2017.1404940&key=10.1103%2FPhysRevB.6.4370

    [30] Wang X L, Jiang H Q, Chen J X et al. Optical bistability effect in plasmonic racetrack resonator with high extinction ratio[J]. Optics Express, 19, 19415-19421(2011). http://www.ncbi.nlm.nih.gov/pubmed/21996882

    [31] Taheri A N, Kaatuzian H. Numerical investigation of a naono-scale electro-plasmonic switch based on metal-insulator-metal stub filter[J]. Optical & Quantum Electronics, 47, 159-168(2015). http://link.springer.com/article/10.1007/s11082-014-9895-1

    Rong Lin, Wenchao Qian, Yunpeng Shang, Shouyu Wang, Cheng Liu, Weiying Qian, Yan Kong. Dual-Channel All-Optical Switch Based on Plasmonic Demultiplexer Structure[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022401
    Download Citation