• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 50002 (2017)
Li Tao*, Chen Ji, and Zhu Shining
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.050002 Cite this Article Set citation alerts
    Li Tao, Chen Ji, Zhu Shining. Manipulating Surface Plasmon Propagation: From Beam Modulation to Near-Field Holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50002 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [2] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

    [3] Maier S A. Plasmonics: fundamentals and applications[M]. Cham: Springer Science & Business Media, 2007.

    [4] Gu Benyuan. Surface plasmon subwavelength optics: principles and novel effects[J]. Physics, 2007, 36(4): 280-287.

    [5] Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3) : 287-324.

    [6] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

    [7] Tong Lianming, Xu Hongxing. Surface plasmons--mechanisms, applications and perspectives[J]. Physics, 2012, 41(9): 582-588.

    [8] Mei Ting, Yang Dong, Zhang Hui, et al. Manipulating surface plasmon polaritons: principles and research progress[J]. Journal of South China Normal University (Natural Science Edition), 2013 , 45(2): 1-11.

    [9] Ren Mengxin, Xu Jingjun. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.

    [10] Xu H, Bjerneld E J, Kll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 1999, 83(21): 4357-4360.

    [11] Pettinger B, Ren B, Picardi G, et al. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy[J]. Physical Review Letters, 2004, 92(9): 096101.

    [12] Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Physical Review Letters, 2008, 100(2): 023901.

    [13] Kinkhabwala A, Yu Z F, Fan S H, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

    [14] Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267.

    [15] Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

    [16] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981.

    [17] Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209.

    [18] Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams[J]. Optics Express, 2008, 16(17): 12880-12891.

    [19] Carretero L, Acebal P, Blaya S, et al. Nonparaxial diffraction analysis of Airy and SAiry beams[J]. Optics Express, 2009, 17(25): 22432-22441.

    [20] Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons[J]. Physical Review Letters, 1996, 77(9): 1889-1892.

    [21] Wang B, Aigouy L, Bourhis E, et al. Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence[J]. Applied Physics Letters, 2009, 94(1): 011114.

    [22] Hooper I R, Sambles J R. Dispersion of surface plasmon polaritons on short-pitch metal gratings[J]. Physical Review B, 2002, 65(16): 165432.

    [23] Kano H, Mizuguchi S, Kawata S. Excitation of surface-plasmon polaritons by a focused laser beam[J]. Journal of the Optical Society of America B, 1998, 15(4): 1381-1386.

    [24] Courjon D, Bainier C. Near field microscopy and near field optics[J]. Reports on Progress in Physics, 1994, 57(10): 989-1028.

    [25] Liu Z, Steele J M, Lee H, et al. Tuning the focus of a plasmonic lens by the incident angle[J]. Applied Physics Letters, 2006, 88(17): 171108.

    [26] Drezet A, Hohenau A, Koller D, et al. Leakage radiation microscopy of surface plasmon polaritons[J]. Materials Science and Engineering B, 2008, 149(3): 220-229.

    [27] González M U, Weeber J C, Baudrion A L, et al. Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors[J]. Physical Review B, 2006, 73(15): 155416.

    [28] Ditlbacher H, Krenn J R, Schider G, et al. Two-dimensional optics with surface plasmon polaritons[J]. Applied Physics Letters, 2002, 81(10): 1762-1764.

    [29] Yin L, Vlasko-Vlasov V K, Pearson J, et al. Subwavelength focusing and guiding of surface plasmons[J]. Nano Letters, 2005, 5(7): 1399-1402.

    [30] Song W, Fang Z, Huang S, et al. Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens[J]. Optics Express, 2010, 18(14): 14762-14767.

    [31] Fang Z, Peng Q, Song W, et al. Plasmonic focusing in symmetry broken nanocorrals[J]. Nano Letters, 2010, 11(2): 893-897.

    [32] Li J, Yang C, Li J, et al. Plasmonic focusing in nanostructures[J]. Plasmonics, 2014, 9(4): 879-886.

    [33] Yang S, Chen W, Nelson R L, et al. Miniature circular polarization analyzer with spiral plasmonic lens[J]. Optics Letters, 2009, 34(20): 3047-3049.

    [34] Chen W, Abeysinghe D C, Nelson R L, et al. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer[J]. Nano Letters, 2010, 10(6): 2075-2079.

    [35] Chen W, Nelson R L, Zhan Q. Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens[J]. Optics Letters, 2012, 37(9): 1442-1444.

    [36] Chen C F, Ku C T, Tai Y H, et al. Creating optical near-field orbital angular momentum in a gold metasurface[J]. Nano Letters, 2015, 15(4): 2746-2750.

    [37] Tsai W Y, Huang J S, Huang C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552.

    [38] Yin X, Ye Z, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

    [39] Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light[J]. Nano Letters, 2013, 13(9): 4148-4151.

    [40] Xiao S, Zhong F, Liu H, et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 2015, 6: 8360.

    [41] Yuan G H, Yuan X C, Bu J, et al. Manipulation of surface plasmon polaritons by phase modulation of incident light[J]. Optics Express, 2011, 19(1): 224-229.

    [42] Zhao C, Wang J, Wu X, et al. Focusing surface plasmons to multiple focal spots with a launching diffraction grating[J]. Applied Physics Letters, 2009, 94(11): 111105.

    [43] Zhao C, Zhang J. Binary plasmonics: launching surface plasmon polaritons to a desired pattern[J]. Optics Letters, 2009, 34(16): 2417-2419.

    [44] Zhao C, Zhang J. Plasmonic demultiplexer and guiding[J]. ACS Nano, 2010, 4(11): 6433-6438.

    [45] Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler[J]. Nano Letters, 2011, 11(7): 2693-2698.

    [46] Hohenau A, Krenn J R, Stepanov A L, et al. Dielectric optical elements for surface plasmons[J]. Optics Letters, 2005, 30(8): 893-895.

    [47] Feng L, Tetz K A, Slutsky B, et al. Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves[J]. Applied Physics Letters, 2007, 91(8): 081101.

    [48] Fang Z, Lu Y, Fan L, et al. Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure[J]. Plasmonics, 2010, 5(1): 57-62.

    [49] Li L, Li T, Wang S M, et al. Plasmonic Airy beam generated by in-plane diffraction[J]. Physical Review Letters, 2011, 107(12): 126804.

    [50] Li L, Li T, Wang S M, et al. Broad band focusing and demultiplexing of in-plane propagating surface plasmons[J]. Nano Letters, 2011, 11(10): 4357-4361.

    [51] L Li, Li T, Wang S M, et al. Steering plasmon beam from a point source[J]. Optics Letters, 2012, 37(24): 5091-5093.

    [52] Cheng Q Q, Li T, Li L, et al. Mode division multiplexing in a polymer-loaded plasmonic planar waveguide[J]. Optics Letters, 2014, 39(13): 3900-3902.

    [53] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

    [54] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

    [55] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.

    [56] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

    [57] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

    [58] Stein B, Devaux E, Genet C, et al. Self-collimation of surface plasmon beams[J]. Optics Letters, 2012, 37(11): 1916-1918.

    [59] Durnin J, Miceli J J Jr, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.

    [60] Thaning A, Jaroszewicz Z, Friberg A T. Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons[J]. Applied Optics, 2003, 42(1): 9-17.

    [61] Bin Z, Zhu L. Diffraction property of an axicon in oblique illumination[J]. Applied Optics, 1998, 37(13): 2563-2568.

    [62] Tanaka T, Yamamoto S. Comparison of aberration between axicon and lens[J]. Optics Communications, 2000, 184(1): 113-118.

    [63] Vasara A, Turunen J, Friberg A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, 1989, 6(11): 1748-1754.

    [64] Davis J A, Carcole E, Cottrell D M. Nondiffracting interference patterns generated with programmable spatial light modulators[J]. Applied Optics, 1996, 35(4): 599-602.

    [65] Davis J A, Carcole E, Cottrell D M. Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator[J]. Applied Optics, 1996, 35(4): 593-598.

    [66] Lin J, Dellinger J, Genevet P, et al. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave[J]. Physical Review Letters, 2012, 109(9): 093904.

    [67] Wei S, Lin J, Wang Q, et al. Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources[J]. Optics Letters, 2013, 38(7): 1182-1184.

    [68] Li L, Li T, Wang S M, et al. Collimated plasmon beam: nondiffracting versus linearly focused[J]. Physical Review Letters, 2013, 110(4): 046807.

    [69] Sztul H I, Alfano R R. The Poynting vector and angular momentum of Airy beams[J]. Optics Express, 2008, 16(13): 9411-9416.

    [70] Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, et al. Nonlinear generation and manipulation of Airy beams[J]. Nature Photonics, 2009, 3(7): 395-398.

    [71] Cottrell D M, Davis J A, Hazard T M. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern[J]. Optics Letters, 2009, 34(17): 2634-2636.

    [72] Liu W, Neshev D N, Shadrivov I V, et al. Plasmonic Airy beam manipulation in linear optical potentials[J]. Optics Letters, 2011, 36(7): 1164-1166.

    [73] Hu Y, Zhang P, Lou C, et al. Optimal control of the ballistic motion of Airy beams[J]. Optics Letters, 2010, 35(13): 2260-2262.

    [74] Wang J, Bu J, Wang M, et al. Generation of high quality Airy beams with blazed micro-optical cubic phase plates[J]. Applied Optics, 2011, 50(36): 6627-6631.

    [75] Cao R, Yang Y, Wang J, et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency[J]. Applied Physics Letters, 2011, 99(26): 261106.

    [76] Salandrino A, Christodoulides D N. Airy plasmon: a nondiffracting surface wave[J]. Optics Letters, 2010, 35(12): 2082-2084.

    [77] Zhang P, Wang S, Liu Y, et al. Plasmonic Airy beams with dynamically controlled trajectories[J]. Optics Letters, 2011, 36(16): 3191-3193.

    [78] Minovich A, Klein A E, Janunts N, et al. Generation and near-field imaging of Airy surface plasmons[J]. Physical Review Letters, 2011, 107(11): 116802.

    [79] Klein A E, Minovich A, Steinert M, et al. Controlling plasmonic hot spots by interfering Airy beams[J]. Optics Letters, 2012, 37(16): 3402-3404.

    [80] Kaminer I, Bekenstein R, Nemirovsky J, et al. Nondiffracting accelerating wave packets of Maxwell′s equations[J]. Physical Review Letters, 2012, 108(16): 163901.

    [81] Zhang P, Hu Y, Li T, et al. Nonparaxial Mathieu and Weber accelerating beams[J]. Physical Review Letters, 2012, 109(19): 193901.

    [82] Kaganovsky Y, Heyman E. Wave analysis of Airy beams[J]. Optics Express, 2010, 18(8): 8440-8452.

    [83] Froehly L, Courvoisier F, Mathis A, et al. Arbitrary accelerating micron-scale caustic beams in two and three dimensions[J]. Optics Express, 2011, 19(17): 16455-16465.

    [84] Epstein I, Arie A. Arbitrary bending plasmonic light waves[J]. Physical Review Letters, 2014, 112(2): 023903.

    [85] Libster-Hershko A, Epstein I, Arie A. Rapidly accelerating Mathieu and Weber surface plasmon beams[J]. Physical Review Letters, 2014, 113(12): 123902.

    [86] Epstein I, Lilach Y, Arie A. Shaping plasmonic light beams with near-field plasmonic holograms[J]. Journal of the Optical Society of America B, 2014, 31(7): 1642-1647.

    [87] Epstein I, Tsur Y, Arie A. Surface-plasmon wavefront and spectral shaping by near-field holography[J]. Laser & Photonics Reviews, 2016, 10(3): 360-381.

    [88] Minovich A E, Klein A E, Neshev D N, et al. Airy plasmons: non-diffracting optical surface waves[J]. Laser & Photonics Reviews, 2014, 8(2): 221-232.

    [89] Chen Zhigang, Xu Jingjun, Hu Yi, et al. Control and novel applications of self-accelerating beams[J]. Acta Optica Sinica, 2016, 36(10): 1026009.

    [90] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

    [91] Chen Y H, Huang L, Gan L, et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light: Science and Applications, 2012, 1(8): e26.

    [92] Chen Y H, Zhang M, Gan L, et al. Holographic plasmonic lenses for surface plasmons with complex wavefront profile[J]. Optics Express, 2013, 21(15): 17558-17566.

    [93] Genevet P, Lin J, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278.

    [94] Dolev I, Epstein I, Arie A. Surface-plasmon holographic beam shaping[J]. Physical Review Letters, 2012, 109(20): 203903.

    [95] Epstein I, Remez R, Tsur Y, et al. Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media[J]. Optica, 2016, 3(1): 15-19.

    [96] Chen Y G, Chen Y H, Li Z Y. Direct method to control surface plasmon polaritons on metal surfaces[J]. Optics Letters, 2014, 39(2): 339-342.

    [97] Chen Y G, Yang F Y, Liu J, et al. Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns[J]. Optics Express, 2014, 22(12): 14727-14737.

    [98] Chen J, Li L, Li T, et al. Indefinite plasmonic beam engineering by in-plane holography[J]. Scientific Reports, 2016, 6: 28926.

    [99] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [100] Yu N, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.

    [101] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

    [102] Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

    [103] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

    [104] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens′ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820.

    [105] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

    [106] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2013, 14(1): 225-230.

    [107] Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays[J]. Nano Letters, 2014, 14(5): 2485-2490.

    [108] Khorasaninejad M, Ambrosio A, Kanhaiya P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258.

    [109] Huang L, Mühlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449.

    [110] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127.

    [111] Choudhury S, Shaltout A, Shalaev V M, et al. Color hologram generation using a Pancharatnam-Berry phase manipulating metasurface[C]. CLEO: Applications and Technology, Optical Society of America, 2015: JTu5A.89.

    [112] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12679-12683.

    [113] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

    [114] Wang B, Dong F, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240.

    [115] Zhao W, Liu B, Jiang H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J]. Optics Letters, 2016, 41(1): 147-150.

    [116] Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505.

    [117] Tang X M, Li L, Li T, et al. Converting surface plasmon to spatial Airy beam by graded grating on metal surface[J]. Optics Letters, 2013, 38(10): 1733-1735.

    [118] Guan C, Ding M, Shi J, et al. Compact all-fiber plasmonic Airy-like beam generator[J]. Optics Letters, 2014, 39(5): 1113-1116.

    [119] Li L, Li T, Tang X, et al. Plasmonic polarization generator in well-routed beaming[J]. Light: Science and Applications, 2015, 4(9): e330.

    [120] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

    [121] Wang Yue, Wang Xuan, Li Longwei, Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

    [122] Dou Xiujie, Min Changjun, Zhang Yuquan, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004.

    CLP Journals

    [1] Wu Renglai, Quan Jun, Yang Xiyuan, Xiao Shifa, Xue Hongjie. Excitation and Modulation Properties of Dipole and Quadrupole Modes of Plasmon in One-Dimensional System[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72501

    Li Tao, Chen Ji, Zhu Shining. Manipulating Surface Plasmon Propagation: From Beam Modulation to Near-Field Holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50002
    Download Citation