• Opto-Electronic Engineering
  • Vol. 44, Issue 7, 663 (2017)
Zhanhua Huang1、2, Xiaoqing Ma1、2、*, Pan Zhu1、2, Yanan Zhang1、2, Huaiyu Cai1、2, and Yinxin Zhang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.07.001 Cite this Article
    Zhanhua Huang, Xiaoqing Ma, Pan Zhu, Yanan Zhang, Huaiyu Cai, Yinxin Zhang. Design of long-wavelength infrared polarizer based on sub-wavelength aluminum-ZnSe grating[J]. Opto-Electronic Engineering, 2017, 44(7): 663 Copy Citation Text show less
    References

    [1] Yemelyanov K M, Lin S S, Luis W Q, et al. Bio-inspired display of polarization information using selected visual cues[J]. Proceedings of the SPIE, 2003, 5158: 71-84.

    [2] Lin S S, Yemelyanov K M, Pugh E N, et al. Polarization enhanced visual surveillance techniques[C]// IEEE International Conference on Networking, Sensing and Control, 2004, 1: 216-221.

    [3] Gartley M G. Polarimetric modeling of remotely sensed scenes in the thermal infrared[D]. Rochester: Rochester Institute of Technology, 2007.

    [4] Zhang Na, Chu Jinkui, Zhao Kaichun, et al. The design of the subwavelength wire-grid polarizers based on rigorous cou-ple-wave theory[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1739-1743.

    [5] Meng Fantao, Chu Jinkui, Han Zhitao, et al. Design of the sub-wavelength wire-grid polarizers[J]. Nanotechnology and Precision Engineering, 2007, 5(4): 269-272.

    [6] Chen C M, Niu Peilun, Sung C K, et al. Fabricating bi-layered metallic wire-grid polarizers by nanoimprint and O2 plasma etching[J]. Microelectronic Engineering, 2013, 102: 53-59.

    [7] Zhou Yang. The research of deep-subwavelength grating by holographic-immersion lithography[D]. Suzhou: Soochow University, 2015.

    [8] Liao Yanlin, Han Zhengfu, Cao Zhuoliang. Polarizer based on double layer subwavelength metal dielectric grating structure[J]. Journal of University of Science and Technology of China, 2005, 35(5): 650-655.

    [9] Li Yigui, Sugiyama S. Sub-wavelength gratings based on X-ray lithography[J]. Nanotechnology and Precision Engineering, 2007, 5(4): 249-252.

    [10] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

    [11] Brundrett D L, Glytsis E N, Gaylord T K. Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs[J]. Ap-plied Optics, 1994, 33(13): 2695-2706.

    [12] Guo Qing. The designing and fabrication process simulation of the wire-grid polarizer[D]. Dalian: Dalian University of Tech-nology, 2009.

    [13] Moharam M G, Pommet D A, Grann E B, et al. Stable imple-mentation of the rigorous coupled-wave analysis for sur-face-relief gratings: enhanced transmittance matrix ap-proach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086.

    [14] Kang Guoguo, Tan Qiaofeng, Chen Weili, et al. Design and fabrication of sub-wavelength metal wire-grid and its applica-tion to experimental study of polarimetric imaging[J]. Acta Physica Sinica, 2011, 60(1): 337-343.

    [15] Zhang Liang, Li Chengfang. Polarization effect of 150nm subwavelength aluminum wire grating in near infrared[J]. Chinese Journal of Lasers, 2006, 33(4): 467-471.

    [16] Hasman E, Bomzon Z, Niv A, et al. Polarization beam-splitters and optical switches based on space-variant comput-er-generated subwavelength quasi-periodic structures[J]. Op-tics Communications, 2002, 209(1-3): 45-54.

    [17] Zhou Chuanhong, Wang Lei, Nie Ya, et al. The rigorous coupled-wave analysis of guided-mode resonance in dielectric gratings[J]. Acta Physica Sinica, 2002, 51(1): 68-73.

    Zhanhua Huang, Xiaoqing Ma, Pan Zhu, Yanan Zhang, Huaiyu Cai, Yinxin Zhang. Design of long-wavelength infrared polarizer based on sub-wavelength aluminum-ZnSe grating[J]. Opto-Electronic Engineering, 2017, 44(7): 663
    Download Citation