• Laser & Optoelectronics Progress
  • Vol. 53, Issue 1, 10002 (2016)
Feng He1、2、*, Zhang Yizhu1, and Jiang Yuhai1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop53.010002 Cite this Article Set citation alerts
    Feng He, Zhang Yizhu, Jiang Yuhai. Atomic and Molecular Experiments Progress in Free-Electron Laser Field[J]. Laser & Optoelectronics Progress, 2016, 53(1): 10002 Copy Citation Text show less
    References

    [1] W Ackermann, G Asova, V Ayvazyan, et al.. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nat Photonics, 2007, 1(6): 336-342.

    [2] DESY. Flash parameters[OL]. http://photon-science.desy.de/facilities/flash/flash_parameters/index_eng.html.

    [3] T Shintake, H Tanaka, T Hara, et al.. A compact free- electron laser for generating coherent radiation in the extreme ultraviolet region[J]. Nat Photonics, 2008, 2(9): 555-559.

    [4] T Ishikawa, H Aoyagi, T Asaka, et al.. A compact X-ray free-electron laser emitting in the sub-angstrom region[J]. Nature Photonics, 2012, 6(8): 540-544.

    [5] M Yabashi, H Tanaka, T Tanaka, et al.. Compact XFEL and AMO sciences: SACLA and SCSS[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 8323-8331.

    [6] P Emma, R Akre, J Arthur, et al.. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nat Photonics, 2010, 4(9): 641-647.

    [7] SLAC. LCLS parameters[OL]. http://www-ssrl.slac.stanford.edu/lcls/users/proposals.html.

    [8] E Allaria, R Appio, L Badano, et al.. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nat Photonics, 2012, 6(10): 699-704.

    [9] Zhentang Zhao, Dong Wang. Development of X-ray free electron lasers[J]. Chinese J Lasers, 2010, 37(9): 2242-2252.

    [10] Liu Jing, Shu Ting, Zhang Jun. Research development on free electron laser in Europe[J]. Laser & Optoelectronics Progress, 2007, 44(6): 43-48.

    [11] Bai Shan. Extreme ultraviolet and X-ray free electron lasers[J]. Laser & Optoelectronics Progress, 2003, 40(2): 23-28.

    [12] A Rudenko, L Foucar, M Kurka, et al.. Recoil-ion momentum distributions for two-photon double ionization of He and Ne by 44 eV free-electron laser radiation[J]. Phys Rev Lett, 2008, 101(7): 073003.

    [13] R Moshammer, Y H Jiang, L Foucar, et al.. Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses [J]. Phys Rev Lett, 2007, 98(20): 203001.

    [14] A A Sorokin, S V Bobashev, T Feigl, et al.. Photoelectric effect at ultrahigh intensities[J]. Phys Rev Lett, 2007, 99(21): 213002.

    [15] M Richter, M Y Amusia, S V Bobashev, et al.. Extreme ultraviolet laser excites atomic giant resonance[J]. Phys Rev Lett, 2009, 102(16): 163002.

    [16] L Young, E P Kanter, B Krssig, et al.. Femtosecond electronic response of atoms to ultra-intense X-rays[J]. Nature, 2010, 466(7302): 56-61.

    [17] B Rudek, S K Son, D Rolles, et al.. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses[J]. Nat Photonics, 2012, 6(12): 1-8.

    [18] A Yamada, H Fukuzawa, K Motomura, et al.. Ion-ion coincidence studies on multiple ionizations of N2 and O2 molecules irradiated by extreme ultraviolet free-electron laser pulses[J]. J Chem Phy, 2010, 132(20): 204305.

    [19] Y H Jiang, A Rudenko, M Kurka, et al.. Few-photon multiple ionization of N2 by extreme ultraviolet free-electron laser radiation[J]. Phys Rev Lett, 2009, 102(12): 123002.

    [20] Y H Jiang, T Pfeifer, A Rudenko, et al.. Temporal coherence effects in multiple ionization of N2 via XUV pump- probe autocorrelation[J]. Phys Rev A, 2010, 82(4): 5929-5937.

    [21] T Sato, T Okino, K Yamanouchi, et al.. Dissociative two-photon ionization of N2 in extreme ultraviolet by intense selfamplified spontaneous emission free electron laser light[J]. Appl Phys Lett, 2008, 92(15): 154103.

    [22] J P Cryan, J M Glownia, J Andreasson, et al.. Auger electron angular distribution of double core-hole states in the molecular reference frame[J]. Phys Rev Lett, 2010, 105(8): 083004.

    [23] L Fang, M Hoener, O Gessner, et al.. Double core-hole production in N2: beating the Auger clock[J]. Phys Rev Lett, 2010, 105(8): 083005.

    [24] L Fang, M Hoener, N Berrah. Ultra-intense X-ray induced non-linear processes in molecular nitrogen[J]. Journal of Physics: Conference Series, 2011, 288(1): 012019.

    [25] A Rudenko, Y H Jiang, M Kurka, et al.. Exploring few- photon, few- electron reactions at FLASH: from ion yield and momentum measurements to time-resolved and kinematically complete experiments[J]. J Phys B at Mol Opt Phys, 2010, 43(19): 194004.

    [26] Y H Jiang, A Rudenko, J F Pérez-Torres, et al.. Investigating two-photon double ionization of D2 by XUV-pump–XUVprobe experiments[J]. Phys Rev A, 2010, 81(5): 051402.

    [27] K Schnorr, A Senftleben, M Kurka, et al.. Electron rearrangement dynamics in dissociating I2 molecules accessed by extreme ultraviolet pump-probe experiments[J]. Phys Rev Lett, 2014, 113(7): 073001.

    [28] Y H Jiang, A Rudenko, O Herrwerth, et al.. Ultrafast extreme ultraviolet induced isomerization of acetylene cations[J]. Phys Rev Lett, 2010, 105(26): 263002.

    [29] B Erk, R Boll, S Trippel, et al.. Imaging charge transfer in iodomethane upon X-ray photo absorption[J]. Science, 2014, 345(6194): 288-291.

    [30] S T Pratt. Charge transfer goes the distance[J]. Science, 2014, 345(6194): 267-268.

    [31] B Erk, D Rolles, L Foucar, et al.. Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules[J]. Phys Rev Lett, 2013, 110(5): 053003.

    [32] Y H Jiang, A Rudenko, M Kurka, et al.. EUV-photon-induced multiple ionization and fragmentation dynamics: from atoms to molecules[J]. J Phys B at Mol Opt Phys, 2009, 42(13): 134012.

    [33] J Feldhaus, M Krikunova, M Meyer, et al.. AMO science at the FLASH and European XFEL free-electron laser facilities[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 164002.

    [34] N Berrah, J Bozek, and J Costello, et al.. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs)[J]. J Mod Opt, 2010, 57(12): 1015-1040.

    [35] J Ullrich, A Rudenko, R Moshammer. Free-electron lasers: new avenues in molecular physics and photochemistry[J]. Annu Rev Phys Chem, 2012, 63: 635-660.

    [36] L Fang, T Osipov, B F Murphy, et al.. Probing ultrafast electronic and molecular dynamics with free-electron lasers[J]. J Phys B at Mol Opt Phys, 2014, 47(12): 124006.

    [37] H N Chapman, P Fromme, A Barty, et al.. Femtosecond X-ray protein nano crystallo graphy[J]. Nature, 2011, 470(7332): 73-77.

    [38] M M Seibert, T Ekeberg, F R N C Maia, et al.. Single mimivirus particles intercepted and imaged with an X-ray laser[J]. Nature, 2011, 470(7332): 78-81.

    [39] R Neutze, R Wouts, D van der Spoel, et al.. Potential for biomolecular imaging with femtosecond X-ray pulses[J]. Nature, 2000, 406(6797): 752-757.

    [40] T R M Barends, F Lutz F, B Sabine B, et al.. De novo protein crystal structure determination from X-ray free-electron laser data[J]. Nature, 2014, 505(7482): 244-247.

    [41] O Schwarzkopf, B Krassig, J Elmiger J, et al.. Energy-and angle-resolved double photo-ionization in helium[J]. Phys Rev Lett, 1993, 70(20): 3008-3011.

    [42] T Weber, A O Czasch, O Jagutzki, et al.. Complete photo-fragmentation of the deuterium molecule[J]. Nature, 2004, 431(7007): 437-440.

    [43] J S Briggs, V Schmidt. Differential cross sections for photo-double-ionization of the helium atom[J]. J Phys B At Mol Opt Phys, 2000, 33(1): R1-R48.

    [44] A L’Huillier, L Lompre, G Mainfray, et al.. Multiply charged ions induced by multiphoton absorption in rare-gases at 0.53 μm[J]. Phys Rev A, 1983, 27(5): 2503-2512.

    [45] D N Fittinghoff, P R Bolton, B Chang, et al.. Observation of nonsequential double ionization of helium with optical tunneling [J]. Phys Rev Lett, 1992, 69(18): 2642-2645.

    [46] B Walker, B Sheehy, L F Dimauro, et al.. Precision measurement of strong field double ionization of helium[J]. Phys Rev Lett, 1994, 73(9): 1227-1230.

    [47] T Weber, M Weckenbrock, A Staudte, et al.. Recoil-ion momentum distributions for single and double ionization of helium in strong laser fields[J]. Phys Rev Lett, 2000, 84(3): 443-446.

    [48] A Staudte, C Ruiz, M SchoFfler, et al.. Binary and recoil collisions in strong field double ionization of helium[J]. Phys Rev Lett, 2007, 99(26): 263002.

    [49] A Rudenko, V L B der Jesus, T Ergler, et al.. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm[J]. Phys Rev Lett, 2007, 99(26): 263003.

    [50] E Foumouo, P Antoine, B Piraux, et al.. Evidence for highly correlated electron dynamics in two-photon double ionization of helium[J]. J Phys B at Mol Opt Phys, 2008, 41(5): 051001.

    [51] P Lambropoulos, L A A Nikolopoulos, M G Makris. Signatures of direct double ionization under XUV radiation[J]. Phys Rev A, 2005, 72(1): 013410.

    [52] D A Horner, F Morales, T N Rescigno, et al.. Two-photon double ionization of helium above and below the threshold for sequential ionization[J]. Phys Rev A, 2007, 76(3): 030701.

    [53] R Pazourek, J Feist, S Nagele, et al.. Universal features in sequential and nonsequential two-photon double ionization of helium[J]. Phys Rev A, 2011, 83(4): 053418.

    [54] E Foumouo, P Antoine, B Piraux, et al.. Evidence for highly correlated electron dynamics in two-photon double ionization of helium[J]. J Phys B At Mol Opt Phys, 2008, 41(5): 051001.

    [55] D A Horner, T N Rescigno, C W McCurdy. Decoding sequential versus nonsequential two-photon double ionization of helium using nuclear recoil[J]. Phy Rev A, 2008, 77(3): 030703.

    [56] D A Horner, C W McCurdy, M C N Rescigno. Triple differential cross sections and nuclear recoil in two-photon double ionization of helium[J]. Phy Rev A, 2008, 78(4): 043416.

    [57] Th Weber, M Weckenbrock, A Staudte, et al.. Atomic dynamics in single and multi-photondouble ionization: An experimental comparison[J]. Opt Express, 2001, 8(7): 368-376.

    [58] A Hishikawa, M Fushitani, Y Hikosaka, et al.. Enhanced nonlinear double excitation of He in intense extreme ultraviolet laser fields[J]. Phys Rev Lett, 2011, 107(24): 243003.

    [59] N Saito N, Suzuki I H. Multiple photoionization of Ne in the K-shell ionization region[J]. Phys Scr, 1992, 45(3): 253-256.

    [60] J L Chaloupka, J Rudati, R Lafon, et al.. Observation of a transition in the dynamics of strong-field double ionization[J]. Phys Rev Lett, 2003, 90(3): 033002.

    [61] B Witzel, N A Papadogiannis, D Charalambidis. Charge-state resolved above threshold ionization[J]. Phys Rev Lett, 2000, 85(11): 2268-2271.

    [62] V Schmidt. Photoionization of atoms using synchrotron radiation[J]. Rep Prog Phys, 1992, 64(9): 1483-1659.

    [63] J P Connerade, J M Esteva, R C Karnatak. Giant Resonances in Atoms, Molecules, and Solids[M]. New York: Springer, 1987.

    [64] M Y Amusia, J P Connerade. The theory of collective motion probed by light[J]. Rep Prog Phys, 2000, 63(1): 41-70.

    [65] H Fukuzawa, S K Son, K Motomura, et al.. Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses[J]. Phys Rev Lett, 2012, 110(17): 173005.

    [66] N Gerken, S Klumpp, A A Sorokin, et al.. Time-dependent multiphoton ionization of Xenon in the soft-X-ray regime[J]. Phys Rev Lett, 2014, 112(21): 213002.

    [67] B Rudek, D Rolles, S K Son, et al.. Resonance-enhanced multiple ionization of krypton at an X-ray free-electron laser[J]. Phys Rev A, 2013, 87(2): 023413.

    [68] M Meyer, D Cubaynes, V Richardson, et al.. Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr[J]. Phys Rev Lett, 2010, 104(21): 213001.

    [69] J F Pérez- Torres, F Morales, F Martin, et al.. Asymmetric electron angular distributions in resonant dissociative photoionization of H with ultrashort XUV pulses[J]. Phys Rev A, 2009, 80(1): 011402.

    [70] A S Alnaser, I Litvinyuk, T Osipov, et al.. Momentum-imaging investigations of the dissociation of D2+ and the isomerization of acetylene to vinylidene by intense short laser pulses[J]. J Phys B At Mol Opt Phys, 2006, 39(13): S485-S492.

    [71] M E A Madjet, O Vendrell, R Santra. Ultrafast dynamics of photoionized acetylene[J]. Phys Rev Lett, 2011, 107(26): 263002.

    [72] Xiao Tiqiao, Xie Honglan, Deng Biao, et al.. Progresses of X-ray imaging methodology and its applications at Shanghai synchrotron radiation facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

    [73] Liang Chuanhui, Wang Yudan, Du Guohao, et al.. Research on the contrast enhancement algorithm of synchrotron radiation X-ray image[J]. Acta Optica Sinica, 2015, 35(3): 0310003.

    [74] Zhu Huachun, Tong Yajun, Ji Te, et al.. Spatial resolution measurement of synchrotron radiation infrared microspectroscopy beamline[J]. Acta Optica Sinica, 2015, 35(4): 0430002.

    [75] B Erk, D Rolles, L Foucar, et al.. Inner-shell multiple ionization of polyatomic molecules with an intense X-ray free-electron laser studied by coincident ion momentum imaging[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 164031.

    Feng He, Zhang Yizhu, Jiang Yuhai. Atomic and Molecular Experiments Progress in Free-Electron Laser Field[J]. Laser & Optoelectronics Progress, 2016, 53(1): 10002
    Download Citation