• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 1, 1750018 (2018)
Zahra Ghanian1, Girija Ganesh Konduri2, Said Halim Audi3, Amadou K. S. Camara4, and Mahsa Ranji1、*
Author Affiliations
  • 1Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
  • 2Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • 3Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
  • 4Department of Anesthesiology and Anesthesia Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • show less
    DOI: 10.1142/s1793545817500183 Cite this Article
    Zahra Ghanian, Girija Ganesh Konduri, Said Halim Audi, Amadou K. S. Camara, Mahsa Ranji. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750018 Copy Citation Text show less
    References

    [1] A. P. West, G. S. Shadel, S. Ghosh, “Mitochondria in innate immune responses," Nat. Rev. Immunol. 11, 489-402 (2011).

    [2] J. St-Pierre, J. A. Buckingham, S. J. Roebuck, M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain," J. Biolo. Chem. 277, 44784-44790 (2002).

    [3] B. Chance, H. Sies, A. Boveris, “Hydroperoxide metabolism in mammalian organs," Physiol. Rev. 59, 527-605 (1979).

    [4] D. F. Stowe, A. K. S. Camara, “Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function," Antioxid. Redox Signal. 11, 1373-1414 (2009).

    [5] A. Boveris, B. Chance, “The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen," Biochem. J. 134, 707-716 (1973).

    [6] A. K. S. Camara, E. J. Lesnefsky, D. F. Stowe, “Potential Therapeutic Benefits of Strategies Directed to Mitochondria," Antioxid. Redox Signal. 13, 279-347 (2010).

    [7] A. K. S. Camara, M. Bienengraeber, D. F. Stowe, “Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury," Front. Physiol. 2(13), 1-34 (2011).

    [8] R. M. Touyz, “Reactive oxygen species and angiotensin II signaling in vascular cells implications in cardiovascular disease," Braz. J. Med. Biol. Res. 37, 1263-1273 (2004).

    [9] F. Q. Schafer, G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple," Free Radi. Biol. Med. 30, 1191-1212 (2001).

    [10] K. Nagata, Y. Iwasaki, T. Yamada, T. Yuba, K. Kono, S. Hosogi et al., “Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury," Respir. Med. 101, 800-807 (2007).

    [11] E. Gitto, R. J. Reiter, M. Karbownik, X. T. Dun, I. Barberi, “Respiratory distress syndrome in the newborn: Role of oxidative stress," Intensive Care Med. 27, 1116-1123 (2001).

    [12] M. E. Wearden, U. T. Brunk, A. Terman, J. W. Eaton, “Mitochondria: Potential importance in hyperoxic lung injury," Pediatr. Res. 47, 380a-380a (2000).

    [13] O. D. Saugstad, “Bronchopulmonary dysplasiaoxidative stress and antioxidants," Semin. Neonatol. 8, 39-49 (2003).

    [14] N. G. Bazan, V. Colangelo, W. J. Lukiw, “Prostaglandins and other lipid mediators in Alzheimer's disease," Prostaglandins Other Lipid Mediat. 68 69, 197-210 (2002).

    [15] H. L. Hsieh, C. M. Yang, “Role of redox signaling in neuroinflammation and neurodegenerative diseases," Biomed. Res. Int. 2013, Article ID 484613, 18 pages (2013).

    [16] J. F. Turrens, “Mitochondrial formation of reactive oxygen species," J. Physiol.-London 552, 335-344 (2003).

    [17] V. Sampath, A. C. Radish, A. L. Eis, K. Broniowska, N. Hogg, G. G. Konduri, “Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia," Free Radic. Biol. Med. 46, 663-671 (2009).

    [18] K. N. Farrow, S. Wedgwood, K. J. Lee, L. Czech, S. F. Gugino, S. Lakshminrusimha et al., “Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn," Respir. Physiol. Neurobiol. 174, 272-281 (2010).

    [19] S. Lakshminrusimha, J. A. Russell, R. H. Steinhorn, D. D. Swartz, R. M. Ryan, S. F. Gugino et al., “Pulmonary Hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen," Pediatr. Res. 62, 313-318 (2007).

    [20] P. Mukhopadhyay, M. Rajesh, G. Hasko, B. J. Hawkins, M. Madesh, P. Pacher, “Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy," Nat. Protoc. 2, 2295-2301 (2007).

    [21] K. M. Robinson, M. S. Janes, M. Pehar, J. S. Monette, M. F. Ross, T. M. Hagen et al., “Selective fluorescent imaging of superoxide in vivo using ethidium-based probes," Proc. Nat. Acad. Sci. USA 103, 15038-15043 (2006).

    [22] H. R. Rezvani, N. Ali, A. Taieb, H. de Verneuil, F. Mazurier, “Hypoxia-inducible factor-1alpha, a key factor in skin physiology and pathophysiology," J. Invest. Dermatol. 132, S31-S31 (2012).

    [23] M. Pehar, M. R. Vargas, K. M. Robinson, P. Cassina, P. J. Diaz-Amarilla, T. M. Hagen et al., “Mitochondrial superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis," J. Neurosci. 27, 7777-7785 (2007).

    [24] P. Mukhopadhyay, M. Rajesh, K. Yoshihiro, G. Hasko, P. Pacher, “Simple quantitative detection of mitochondrial superoxide production in live cells," Biochem. Biophys. Res. Commun. 358, 203-208 (2007).

    [25] B. J. Hawkins, M. Madesh, C. J. Kirkpatrick, A. B. Fisher, “Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling," Mol. Biol. Cell. 18, 2002-2012 (2007).

    [26] A. De Pauw, S. Demine, S. Tejerina, M. Dieu, E. Delaive, A. Kel et al., “Mild mitochondrial uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: Role for triglyceride content reduction," Am. J. Physiol.-Endocrinol. Metabol. 302, E1123-E1141 (2012).

    [27] A. Y. Abramov, A. Scorziello, M. R. Duchen, “Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation," J. Neurosci. 27, 1129-1138 (2007).

    [28] M. C. Zimmennan, L. W. Oberley, S. W. Flanagan, “Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels," J. Neurochem. 102, 609-618 (2007).

    [29] J. Fauconnier, D. C. Andersson, S. J. Zhang, J. T. Lanner, R. Wibom, A. Katz et al., “Effects of palmitate on Ca2t handling in adult control and ob/ob cardiomyocytes," Diabetes 56, 1136-1142 (2007).

    [30] A. Iuso, S. Scacco, C. Piccoli, F. Bellomo, V. Petruzzella, R. Trentadue et al., “Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I," J. Biol. Chem. 281, 10374-10380 (2006).

    [31] M. Rajesh, P. Mukhopadhyay, S. Batkai, G. Hasko, L. Liaudet, V. R. Drel et al., “Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption," Am. J. Physiol.-Heart Circul. Physiol. 293, H610-H619 (2007).

    [32] G. G. Konduri, J. S. Ou, Y. Shi, K. A. Pritchard, “Decreased association of HSP90 impairs endothelial nitric oxide synthase in fetal lambs with persistent pulmonary hypertension," Am. J. Physiol.-Heart Circul. Physiol. 285, H204-H211 (2003).

    [33] S. Lakshminrusimha, J. A. Russell, R. H. Steinhorn, R. M. Ryan, S. F. Gugino, F. C. Morin, 3rd et al., “Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation," Pediatr. Res. 59, 137-141 (2006).

    [34] R. A. J. Smith, R. C. Hartley, M. P. Murphy, “Mitochondria-Targeted SmallMoleculeTherapeutics and Probes," Antioxid. Redox Signal 15, 3021-3038 (2011).

    [35] K. M. Robinson, M. S. Janes, J. S. Beckman, “The selective detection of mitochondrial superoxide by live cell imaging," Nat. Protoc. 3, 941-947 (2008).

    [36] Y. B. Liu, D. R. Schubert, “The specificity of neuroprotection by antioxidants" J. Biomed. Sci. 16, 98-109 (2009).

    [37] S. Bolte, F. P. Cordelieres, “A guided tour into subcellular colocalization analysis in light microscopy," J. Microsc.-Oxford, 224, 213-232 (2006).

    [38] W. Strober, “Trypan Blue Exclusion Test of Cell Viability," Curr. Protoc. Immunol. 111, A3 B 1-3 (2015).

    [39] Z. Ghanian, K. Staniszewski, N. Jamali, R. Sepehr, S. Wang, C. M. Sorenson et al., “Quantitative assessment of retinopathy using multi-parameter image analysis," J. Med. Signals Sens. 6, 71-80 (2016).

    [40] H. R. Rezvani, S. Dedieu, S. North, F. Belloc, R. Rossignol, T. Letellier et al., “Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure," J. Biol. Chem. 282, 16413-16422 (2007).

    [41] L. I. Johnson-Cadwell, M. B. Jekabsons, A. Wang, B. M. Polster, D. G. Nicholls, “`Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress," J. Neurochem. 101, 1619-1631 (2007).

    [42] B. A. Roelofs, S. X. Ge, P. E. Studlack, B. M. Polster, “Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV," Free Radic. Biol. Med. 86, 250-258 (2015).

    [43] B. Kalyanaraman, B. P. Dranka, M. Hardy, R. Michalski, J. Zielonka, “HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes The ultimate approach for intra- and extracellular superoxide detection," Biochim. Et Biophys. Acta-Gen. Subj. 1840, 739-744 (2014).

    [44] J. Zielonka, J. Vasquez-Vivar, B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine," Nat. Protoc. 3, 8-21 (2008).

    [45] H. J. Heusinkveld, R. H. S. Westerink, “Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels," Toxicol. Appl. Pharmacol. 255, 1-8 (2011).

    [46] P. J. Bushway, M. Mercola, J. H. Price, “A comparative analysis of standard microtiter plate reading versus imaging in cellular assays," Assay Drug Dev. Technol. 6, 557-567 (2008).

    [47] S. Menazza E. Murphy, “The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System," Circul. Res. 118, 994-1007 (2016).

    [48] X. Y. Li, P. Fang, J. T. Mai, E. T. Choi, H. Wang, X. F. Yang, “Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers," J. Hematol. Oncol. 6, 6-19 (2013).

    [49] M. A. Aon, S. Cortassa, B. O'Rourke, “Redoxoptimized ROS balance: A unifying hypothesis," Biochim. Et Biophys. Acta-Bioenerg. 1797, 865-877 (2010).

    [50] C. Brueckl, S. Kaestle, A. Kerem, H. Habazettl, F. Krombach, H. Kuppe et al., “Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ," Am. J. Respir. Cell Mol. Biol. 34(4), 453-463 (2006).

    [51] J. F. Turrens, “Mitochondrial formation of reactive oxygen species," J. Physiol. 552, 335-344 (2003).

    [52] R. H. Kallet, M. A. Matthay, “Hyperoxic acute lung injury," Respir. Care 58, 123-141 (2013).

    [53] E. Cadenas, A. Boveris, C. I. Ragan, A. O. Stoppani, “Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beefheart mitochondria," Arch. Biochem. Biophys. 180, 248-257 (1977).

    [54] J. F. Turrens, A. Alexandre, A. L. Lehninger, “Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria," Arch. Biochem. Biophys. 237, 408-414 (1985).

    [55] Y. Liu, G. Fiskum, D. Schubert, “Generation of reactive oxygen species by the mitochondrial electron transport chain," J. Neurochem. 80, 780-787 (2002).

    [56] L. Zhang, L. D. Yu, C. A. Yu, “Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria," J. Biol. Chem. 273, 33972-33976 (1998).

    [57] P. R. Rich, W. D. Bonner, “The sites of superoxide anion generation in higher plant mitochondria," Arch. Biochem. Biophys. 188, 206-213 (1978).

    [58] I. V. Grigolava, M. Ksenzenko, A. A. Konstantinob, A. N. Tikhonov, T. M. Kerimov, “[Tiron as a spintrap for superoxide radicals produced by the respiratory chain of submitochondrial particles]," Biokhimiia 45, 75-82 (1980).

    [59] F. Diaz, H. Fukui, S. Garcia C. T. Moraes, “Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts," Mol. Cell. Biol. 26, 4872-4881 (2006).

    [60] H. B. Leavesley, L. Li, K. Prabhakaran, J. L. Borowitz, G. E. Isom, “Interaction of cyanide and nitric oxide with cytochrome c oxidase: Implications for acute cyanide toxicity," Toxicol. Sci. 101, 101-111 (2008).

    [61] I. Sipos, L. Tretter, V. Adam-Vizi, “Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals," J. Neurochem. 84, 112-118 (2003).

    [62] A. K. S. Camara, M. L. Riess, L. G. Kevin, E. Novalija, D. F. Stowe, “Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart," Am. J. Physiol.-Heart Circul. Physiol. 286, H1289-H1299 (2004).

    [63] I. Amigo, F. M. da Cunha, M. F. Forni, W. Garcia- Neto, P. A. Kakimoto, L. A. Luevano-Martinez et al., “Mitochondrial form, function and signalling in aging," Biochem. J. 473, 3421-3449 (2016).

    [64] P. G. Gunasekar, J. L. Borowitz, G. E. Isom, “Cyanide-induced generation of oxidative species: Involvement of nitric oxide synthase and cyclooxygenase-2," J. Pharmacol. Exp. Therap. 285, 236-241 (998).

    [65] D. C. Jones, P. G. Gunasekar, J. L. Borowitz, G. E. Isom, “Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells," J. Neurochem. 74, 2296-2304 (2000).

    [66] Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, E. J. Lesnefsky, “Production of reactive oxygen species by mitochondria Central role of complex III," J. Biolog. Chem. 278, 36027-36031 (2003).

    [67] Y. J. Wang, Y. S. Ho, S. W. Chu, H. J. Lien, T. H. Liu, J. K. Lin, “Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone, a toxic metabolite of pentachlorophenol (vol 105, pg 1, 1997)," Chem.-Biolog. Interac. 106, 1-16 (1997).

    [68] W. C. Dorsey, P. B. Tchounwou, B. D. Ford, “Neuregulin 1-Beta cytoprotective role in AML 12 mouse hepatocytes exposed to pentachlorophenol," Int. J. Environ. Res. Publ. Health 3, 11-22 (2006).

    [69] P. Fernandez Freire, V. Labrador, J. M. P. Martin, M. J. Hazen, “Cytotoxic effects in mammalian Vero cells exposed to pentachlorophenol," Toxicology 210, 37-44 (2005).

    [70] J. Folch, M. Yeste-Velasco, D. Alvira, A. V. de la Torre, M. Bordas, M. Lopez et al., “Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons," Neurotoxicology 30, 451-458 (2009).

    [71] R. Sepehr, S. H. Audi, K. S. Staniszewski, S. T. Haworth, E. R. Jacobs, M. Ranji, “Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs after Exposure to Hyperoxia," IEEE J. Transl. Eng. Health. Med. 1, (2013).

    [72] Y. L. Dong, P. J. Zhou, S. Y. Jiang, X. W. Pan, X. H. Zhao, “Induction of oxidative stress and apoptosis by pentachlorophenol in primary cultures of Carassius carassius hepatocytes," Comparative Biochem. Physiol. C-Toxicol. Pharmacol. 150, 179-185 (2009).

    [73] J. N. He, Y. Duan, D. P. Hua, G. J. Fan, L. Wang, Y. Liu et al., “DEXH Box RNA Helicase-Mediated Mitochondrial Reactive Oxygen Species Production in Arabidopsis Mediates Crosstalk between Abscisic Acid and Auxin Signaling," Plant Cell 24, 1815-1833 (2012).

    [74] R. F. Feissner, J. Skalska, W. E. Gaum, S. S. Sheu, “Crosstalk signaling between mitochondrial Ca2t and ROS," Front. Biosci.-Landmark 14, 1197-1218 (2009).

    [75] E. Cadenas, A. Boveris, “Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria," Biochem. J. 188, 31-37 (1980).

    [76] B. D. Fink, Y. O'Malley, B. L. Dake, N. C. Ross, T. E. Prisinzano, W. I. Sivitz, “Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells," PLoS One 4, e4250 (2009).

    [77] M. F. Ross, G. F. Kelso, F. H. Blaikie, A. M. James, H. M. Cocheme, A. Filipovska et al., “Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology," Biochem.-Moscow 70, 222-230 (2005).

    [78] M. Kalbacova, M. Vrbacky, Z. Drahota, Z. Melkova, “Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofl uorometry," Cytometry A 52, 110-116 (2003).

    [79] A. R. Khaled, D. A. Reynolds, H. A. Young, C. B. Thompson, K. Muegge, S. K. Durum, “Interleukin-3 withdrawal induces an early increase in mitochondrial membrane potential unrelated to the Bcl-2 fammily Roles of intracellular pH, ADP transport, and F0F1-ATPase," J. Biolog. Chem. 276, 6453-6462 (2001).

    [80] F. M. P. de Gannes, M. A. Belaud-Rotureau, P. Voisin, N. Leducq, F. Belloc, P. Canioni et al., “Flow cytometric analysis of mitochondrial activity in situ: Application to acetylceramide-induced mitochondrial swelling and apoptosis," Cytometry 33, 333-339 (1998).

    Zahra Ghanian, Girija Ganesh Konduri, Said Halim Audi, Amadou K. S. Camara, Mahsa Ranji. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750018
    Download Citation