• Journal of Semiconductors
  • Vol. 42, Issue 6, 060502 (2021)
Ke Jin, Zuo Xiao, and Liming Ding
Author Affiliations
  • Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/42/6/060502 Cite this Article
    Ke Jin, Zuo Xiao, Liming Ding. 18.69% PCE from organic solar cells[J]. Journal of Semiconductors, 2021, 42(6): 060502 Copy Citation Text show less
    References

    [1] Y Tong, Z Xiao, X Du et al. Progress of the key materials for organic solar cells. Sci China Chem, 63, 758(2020).

    [2] Q Liu, Y Jiang, K Jin et al. 18% efficiency organic solar cells. Sci Bull, 65, 272(2020).

    [3] J Qin, L Zhang, C Zuo et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 42, 010501(2021).

    [4] K Jin, Z Xiao, L Ding. D18, an eximious solar polymer!. J Semicond, 42, 010502(2021).

    [5] Z Xiao, X Jia, L Ding. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 62, 1562(2017).

    [6] C Duan, L Ding. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 65, 1231(2020).

    [7] C Duan, L Ding. The new era for organic solar cells: polymer donors. Sci Bull, 65, 1422(2020).

    [8] C Duan, L Ding. The new era for organic solar cells: polymer acceptors. Sci Bull, 65, 1508(2020).

    [9] C Duan, L Ding. The new era for organic solar cells: small molecular donors. Sci Bull, 65, 1597(2020).

    [10] A Armin, W Li, J S Oskar et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater, 11, 20003570(2021).

    [11] Z Xiao, S Yang, Z Yang et al. Carbon-oxygen-bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv Mater, 31, 1804790(2019).

    [12] Z Wang, Z Peng, Z Xiao et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 32, 2005386(2020).

    [13] W Li, M Chen, J Cai et al. Molecular order control of non-fullerene acceptors for high-efficiency polymer solar cells. Joule, 3, 819(2019).

    [14] W Li, Z Xiao, J Cai et al. Correlating the electron-donating core structure with morphology and performance of carbon-oxygen-bridged ladder-type non-fullerene acceptor based organic solar cells. Nano Energy, 61, 318(2019).

    [15] T Wang, J Qin, Z Xiao et al. Multiple conformation locks gift polymer donor high efficiency. Nano Energy, 77, 105161(2020).

    [16] J Xiong, K Jin, Y Jiang et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 64, 1573(2019).

    [17] T Wang, J Qin, Z Xiao et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 65, 179(2020).

    [18] J Qin, L Zhang, Z Xiao et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 65, 1979(2020).

    [19] W Guan, D Yuan, J Wu et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J Semicond, 42, 030502(2021).

    [20] W Pan, Y Han, Z Wang et al. Over 1 cm2 flexible organic solar cells. J Semicond, 42, 050301(2021).

    [21] L Liu, Q Liu, Z Xiao et al. Induced J-aggregation in acceptor alloy enhances photocurrent. Sci Bull, 64, 1083(2019).