• Acta Optica Sinica
  • Vol. 40, Issue 23, 2312005 (2020)
Yangguang Xing1、2、3, Lin Li1、*, Jilong Peng2、**, Shanshan Wang1、***, and Yinuo Cheng4
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • 3National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing 100094, China
  • 4Department of Precision Instrument, Tsinghua University, Beijing 100091, China
  • show less
    DOI: 10.3788/AOS202040.2312005 Cite this Article Set citation alerts
    Yangguang Xing, Lin Li, Jilong Peng, Shanshan Wang, Yinuo Cheng. Optical Design of Solar Extreme Ultraviolet Normal-Incidence Broadband Imaging Spectrometer with Non-Rowland Circle Mounting[J]. Acta Optica Sinica, 2020, 40(23): 2312005 Copy Citation Text show less
    Schematic of solar EUV normal-incidence imaging spectrometer. (a) Rowland circle mounting; (b) non-Rowland circle mounting
    Fig. 1. Schematic of solar EUV normal-incidence imaging spectrometer. (a) Rowland circle mounting; (b) non-Rowland circle mounting
    Schematic of aberration-corrected TVLS grating
    Fig. 2. Schematic of aberration-corrected TVLS grating
    Schematic of optical layout of solar EUV broadband imaging spectrometer. (a) Two-dimensional optical layout; (b) three-dimensional model diagram
    Fig. 3. Schematic of optical layout of solar EUV broadband imaging spectrometer. (a) Two-dimensional optical layout; (b) three-dimensional model diagram
    Curve of the ruling density distribution of TVLS grating
    Fig. 4. Curve of the ruling density distribution of TVLS grating
    Ray tracing results. (a)-(c) RMS spots radii change with wavelengths under different off-axis FOV; (d) RMS spots radii versus FOV in the different wavelengths
    Fig. 5. Ray tracing results. (a)-(c) RMS spots radii change with wavelengths under different off-axis FOV; (d) RMS spots radii versus FOV in the different wavelengths
    MTFs of optical system under different wavelengths. (a) λ=40 nm; (b) λ=53 nm; (c) λ=60 nm; (d) λ=73 nm
    Fig. 6. MTFs of optical system under different wavelengths. (a) λ=40 nm; (b) λ=53 nm; (c) λ=60 nm; (d) λ=73 nm
    Spectral resolution of system change with wavelength. (a) 40-47 nm; (b) 53-60 nm; (c) 66-73 nm
    Fig. 7. Spectral resolution of system change with wavelength. (a) 40-47 nm; (b) 53-60 nm; (c) 66-73 nm
    Ray tracing module for different line-pairs spectral images
    Fig. 8. Ray tracing module for different line-pairs spectral images
    Spectrum of line pairs imaged on three CCDs. (a) CCD-1; (b) CCD-2; (c) CCD-3
    Fig. 9. Spectrum of line pairs imaged on three CCDs. (a) CCD-1; (b) CCD-2; (c) CCD-3
    Diffraction enclosed circle energy used to evaluate system's spatial resolution. (a) λ=43.5 nm; (b) λ=56.5 nm; (c) λ=69.5 nm
    Fig. 10. Diffraction enclosed circle energy used to evaluate system's spatial resolution. (a) λ=43.5 nm; (b) λ=56.5 nm; (c) λ=69.5 nm
    Reflectance curve of SiC/Al multilayer film obtained by simulation change with wavelength
    Fig. 11. Reflectance curve of SiC/Al multilayer film obtained by simulation change with wavelength
    TVLS grating efficiency and CCD quantum efficiency change with wavelength. (a) Grating efficiency; (b) CCD quantum efficiency
    Fig. 12. TVLS grating efficiency and CCD quantum efficiency change with wavelength. (a) Grating efficiency; (b) CCD quantum efficiency
    Instrument effective area change with wavelength. (a) Proposed instrument; (b) Solar Orbiter/SPICE
    Fig. 13. Instrument effective area change with wavelength. (a) Proposed instrument; (b) Solar Orbiter/SPICE
    InstrumentWavelength /nmSlitFOV /(')Spectralresolution /(10-4 nm)Spatialresolution /(″)GratingsSpectralmagnification
    HiRES51-633690.4TULS1.0×
    Hinode /EIS17-21 & 25-298.547&221.0TULS1.4×
    SPICE70.4-79 & 97.3-104.91395&831.1TVLS5.5×
    Proposeddesign40-47 & 53-60 &66-7318< 30< 0.60TVLS4.0×
    Table 1. Technical indicators of solar EUV imaging spectrometers
    TermAberration
    F10 and F01Basic grating equation
    F20Tangential astigmatism
    F02Sagittal astigmatism
    F11Off-axis defocusing
    F30 and F21Coma
    F12Slit curvature
    F40, F22, and F04Spherical aberration
    Table 2. Fjk and its corresponding aberrations
    IonWavelength /nmlog Tmax /Klog Ne /cm-3
    Mg VI40.3315.63>10
    Ne V41.6205.678-10
    Mg VIII43.047/43.6624.528-10
    O IV55.4515.247-8.5
    Si IX69.4696.05>11
    Mg IX70.6045.999.2-10.5
    Fe XX72.1556.92>10
    Table 3. Examples of temperature and density for diagnostic plasma line in the observed spectral region
    Specification
    Anastigmatic spectralrange /nm40-47 & 53-60 & 66-73
    IFOV/[(″)×(') ]0.54×18
    Scanning FOV / (')± 5
    Spectralresolution /(10-4 nm)24.9-26.9
    Spatial resolution /(″)0.54
    System focal length /mm5200
    Detector /μm13.5,2048×3072
    Telescope design
    RT /mm2664
    Conic-1.33
    Δ /mm95
    Spectral imaging system design
    Slit size /(μm×mm)3.2×7
    1/d0 /mm-13000
    m+1 order
    Grating parameterInitialOptimum
    β3.986×
    i /(°)1.9251.931
    rA /mm387.000387.325
    R /mm620.397619.992
    ρ /mm616.216616.673
    b20.06580.0671
    Groove density /( groove·mm-1)3000±13
    Ruling area /mm2π×20×20
    Three independent detectors design
    CCDWavelength /nmψ /(°)
    CCD-140-4722.16
    CCD-253-6026.18
    CCD-366-7329.42
    Table 4. Technical indicators and optical element parameters for imaging spectrometer
    Simulation parameters for source with two angles
    X half width /mmY half width /mmX half angle /(°)Y half angle /(°)Power /WRays
    50500.150.151109
    Simulation spectral line-pairs for source with two angles
    CCD-1 /nm40 & 40.002743.5 & 43.502747 & 47.0027
    CCD-2/nm53 & 53.002656.5 & 56.502660 & 60.0026
    CCD-3/nm66 & 66.002569.5 & 69.502573 & 73.0025
    Simulation parameters for CCDs
    MaterialX half width/mmY half width/mmX /pixelY /pixel
    Absorb20.81430722048
    Table 5. Simulation parameters for ray tracing module in ZEMAX non-sequential mode
    γ /(°)d /nmτNδSiC-Al /nmδAl-SiC /nm
    8826.40.31302.10.9
    Table 6. Periodic SiC/Al multilayer film parameters
    Yangguang Xing, Lin Li, Jilong Peng, Shanshan Wang, Yinuo Cheng. Optical Design of Solar Extreme Ultraviolet Normal-Incidence Broadband Imaging Spectrometer with Non-Rowland Circle Mounting[J]. Acta Optica Sinica, 2020, 40(23): 2312005
    Download Citation