• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 259 (2016)
Zhenzhou CHENG1、*, Changyuan QIN1, Fengqiu WANG2, Hao HE3, and Keisuke GODA1、4、5
Author Affiliations
  • 1Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
  • 2School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
  • 3Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
  • 4Department of Electrical Engineering, University of California, Los Angeles 90095, USA
  • 5Japan Science and Technology Agency, Tokyo 102-0076, Japan
  • show less
    DOI: 10.1007/s12200-016-0618-z Cite this Article
    Zhenzhou CHENG, Changyuan QIN, Fengqiu WANG, Hao HE, Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Frontiers of Optoelectronics, 2016, 9(2): 259 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, H nsch T W. Mid-infrared frequency combs. Nature Photonics, 2012, 6(7): 440–449

    [2] Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics, 2012, 6(7): 423–431

    [3] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fire lasers. Nature Photonics, 2013, 7(11): 842–845

    [4] Keuleyan S, Lhuillier E, Brajuskovic V, Guyot-Sionnest P. Midinfrared HgTe colloidal quantum dot photodetectors. Nature Photonics, 2011, 5(8): 489–493

    [5] Novoselv K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004 , 306(5696): 666–669

    [6] Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622

    [7] Xia F, Yan H, Avouris P. The interaction of light and graphene: basics, devices, and applications. Proceedings of the IEEE, 2013, 101(7): 1717–1731

    [8] Ostojic G N, Zaric S, Kono J, Strano M S, Moore V C, Hauge R H, Smalley R E. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Physical Review Letters, 2004, 92(11): 117402

    [9] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116

    [10] Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C. Nanotube polymer composites for ultrafast photonics. Advanced Materials, 2009, 21(38-39): 3874–3899

    [11] Bao Q, Zhang H,Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083

    [12] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G,Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810

    [13] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67

    [14] Yan H, Low T, Zhu W,Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7(5): 394–399

    [15] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6 (10): 630–634

    [16] Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29(5): 205–212

    [17] Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6(2): 317–324

    [18] Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics, 2012, 2(3): 283–294

    [19] Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547

    [20] Wang F, Torrisi F, Jiang Z, Popa D, Hasan T, Sun Z, Cho W, Ferrari A C. Graphene passively Q-switched two-micron fiber lasers. In: Proceedings of Conference of Lasers and Electro-Optics. 2012, 1–2

    [21] Zhang M, Kelleher E J, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R. Tm-doped fiber laser modelocked by graphene-polymer composite. Optics Express, 2012, 20 (22): 25077–25084

    [22] Ma J, Xie G Q, Lv P, GaoW L, Yuan P, Qian L J, Yu H H, Zhang H J,Wang J Y, Tang D Y. Graphene mode-locked femtosecond laser at 2 mm wavelength. Optics Letters, 2012, 37(11): 2085–2087

    [23] Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T, Sibbett W, Ferrari A C. 2 mm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 2013, 102(1): 013113

    [24] Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F, Sennaroglu A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Optics Letters, 2013, 38(3): 341–343

    [25] Wang Q, Teng H, Zou Y, Zhang Z, Li D,Wang R, Gao C, Lin J, Guo L, Wei Z. Graphene on SiC as a Q-switcher for a 2 mm laser. Optics Letters, 2012, 37(3): 395–397

    [26] Tolstik N, Okhotnikov O, Sorokin E, Sorokina I T. Femtosecond Cr: ZnS laser at 2.35 μm mode-locked by carbon nanotubes. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89591A

    [27] Wei C, Zhu X,Wang F, Xu Y, Balakrishnan K, Song F, Norwood R A, Peyghambarian N. Graphene Q-switched 2.78 mm Er3+-doped fluoride fiber laser. Optics Letters, 2013, 38(17): 3233–3236

    [28] Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X, Balakrishnan K, Norwood R A, Peyghambarian N. Graphene mode-locked fiber laser at 2.8 mm. Photonics Technology Letters, 2016, 28 (1): 7–10

    [29] Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5): 297– 301

    [30] Wang X, Cheng Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11): 888–891

    [31] Cheng Z,Wang J, Xu K, Tsang H K, Shu C. Graphene on silicon-onsapphire waveguide photodetectors. In: Proceedings of Laser and Electro-Optics(CLEO), 2015

    [32] Liu C H, Chang Y C, Norris T B, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology, 2014, 9(4): 273–278

    [33] Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4: 1811

    [34] Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M, Capasso F. High-responsivity mid-infrared graphene detectors with antennaenhanced photocarrier generation and collection. Nano Letters, 2014, 14(7): 3749–3754

    [35] Hsu A L, Herring P K, Gabor N M, Ha S, Shin Y C, Song Y, Chin M, Dubey M, Chandrakasan A P, Kong J, Jarillo-Herrero P, Palacios T. Graphene-based thermopile for thermal imaging applications. Nano Letters, 2015, 15(11): 7211–7216

    [36] Badioli M, Woessner A, Tielrooij K J, Nanot S, Navickaite G, Stauber T, García de Abajo F J, Koppens F H L. Phonon-mediated mid-infrared photoresponse of graphene. Nano Letters, 2014, 14 (11): 6374–6381

    [37] Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C. Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 2015, 117(14): 144504

    [38] Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S, Drew H D. Dual-gated bilayer graphene hotelectron bolometer. Nature Nanotechnology, 2012, 7(7): 472–478

    [39] Freitag M, Low T, Martin-Moreno L, Zhu W, Guinea F, Avouris P. Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano, 2014, 8(8): 8350–8356

    [40] Cheng Z, Tsang H K, Wang X, Xu K, Xu J B. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400106

    [41] Cheng Z, Wang J, Zhu B, Xu K, Zhou W, Tsang H K, Shu C. Graphene absorption enhancement using silicon slot waveguides. In: Proceedings of Photonics Conference (IPC) IEEE. 2015, 186– 187

    [42] Wang J, Cheng Z, Shu C, Tsang H K. Optical absorption in graphene-on-silicon nitride microring resonator. IEEE Photonics Technology Letters, 2015, 27(16): 1765–1767

    [43] Cheng Z, Chen X,Wong C Y, Xu K, Fung C K, Chen YM, Tsang H K. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Optics Letters, 2012, 37(7): 1217–1219

    [44] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6 (10): 630–634

    [45] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X, Halas N J. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Letters, 2014, 14 (1): 299–304

    [46] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Letters, 2013, 13(6): 2541–2547

    [47] Abbas A N, Liu G, Liu B, Zhang L, Liu H, Ohlberg D,Wu W, Zhou C. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano, 2014, 8(2): 1538–1546

    [48] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood RM, Heinz T F, Avouris P. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Letters, 2014, 14(3): 1573–1577

    [49] Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349(6244): 165–168

    [50] Loh K P, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12): 1015–1024

    [51] Sun X, Liu Z,Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212

    [52] Feng L, Yang X, Shi X, Tan X, Peng R,Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small, 2013, 9 (11): 1989–1997

    [53] Liu K, Zhang J J, Cheng F F, Zheng T T, Wang C, Zhu J J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry, 2011, 21(32): 12034–12040

    [54] Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009

    [55] Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212

    [56] Yang K, Zhang S, Zhang G, Sun X, Lee S T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323

    [57] Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui D. Folic acid-conjugated graphene oxide loaded with photo- sensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240–250

    [58] Li J L, Hou X L, Bao H C, Sun L, Tang B,Wang J F,Wang X G, Gu M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. Journal of Biomedical Materials Research. Part A, 2014, 102(7): 2181–2188

    [59] Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high nearinfrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825–6831

    [60] Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793

    [61] Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. Journal of Materials Chemistry, 2012, 22 (27): 13773–13781

    [62] Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high nearinfrared absorbance for photothermal treatment of Alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728

    [63] Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214

    [64] Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepi D P, Arsikin K M, Jovanovi S P, Pantovic A C, Drami anin M D, Trajkovic V S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4): 1121–1129

    [65] Li J L, Bao H C, Hou X L, Sun L,Wang X G, GuM. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie International Edition, 2012, 51(8): 1830–1834

    [66] Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Strong two-photoninduced fluorescence from photostable, biocompatible nitrogendoped graphene quantum dots for cellular and deep-tissue imaging. Nano Letters, 2013, 13(6): 2436–2441

    [67] Qian J,Wang D, Cai F H, XiW, Peng L, Zhu Z F, He H, HuML, He S. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angewandte Chemie International Edition, 2012, 51(42): 10570–10575

    [68] Huang J, Zong C, Shen H, Liu M, Chen B, Ren B, Zhang Z. Mechanism of cellular uptake of graphene oxide studied by surfaceenhanced Raman spectroscopy. Small, 2012, 8(16): 2577–2584

    [69] Liu Z, Guo Z, Zhong H, Qin X, Wan M, Yang B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013, 15(8): 2961– 2966

    [70] Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872

    [71] Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C, Keller U. Ultrafast and widely tuneable verticalexternal- cavity surface-emitting laser, mode-locked by a grapheneintegrated distributed Bragg reflector. Optics Express, 2013, 21(25): 31548–31559

    [72] Baylam I, Cizmeciyan M N, Ozharar S, Polat E O, Kocabas C, Sennaroglu A. Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Optics Letters, 2014, 39(17): 5180–5183

    [73] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907

    [74] Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S, Qian L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 mm. Optics Express, 2015, 23(19): 24713–24718

    [75] Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252

    Zhenzhou CHENG, Changyuan QIN, Fengqiu WANG, Hao HE, Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Frontiers of Optoelectronics, 2016, 9(2): 259
    Download Citation