• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 1, 56 (2023)
Yujun CHEN1、2、*, Bo YAO2, Haowei LIU2, Shanshan WEI2, and Qinghe MAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.01.006 Cite this Article
    CHEN Yujun, YAO Bo, LIU Haowei, WEI Shanshan, MAO Qinghe. Development of single-longitudinal-mode DBR fiber laser based on thulium-doped silica glass fiber[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 56 Copy Citation Text show less
    References

    [1] Kadwani P, Sims R, Baudele M, et al. Atmospheric propagation testing using broadband thulium fiber systems [C]. Advances in Optical Materials, 2011.

    [2] Chu Y F, Liu D, Wang Z Z, et al. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600.

    [3] Long H, Liu H W, Li Z W, et al. Narrow-linewidth tunable fiber laser for spectral calibration of spatial heterodyne spectrometer [J]. Chinese Journal of Quantum Electronics, 2017, 34(3): 339-343.

    [4] Yu Y, Ma F, Luo X Y, et al. Entanglement of two quantum memories via fibres over dozens of kilometres [J]. Nature, 2020, 578: 240-245.

    [5] Chandra S, Wager M E, Clayton B, et al. 2 μm-pumped 8-12 μm OPO source for remote chemical sensing [C]. Proceedings of SPIE, 2000, 4036: 200-208.

    [6] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser [J]. Optics Letters, 2004, 29(13): 1503-1505.

    [7] Zhang Z, Shen D Y, Boyland A J, et al. High-power Tm-doped fiber distributed-feedback laser at 1943 nm [J]. Optics Letters, 2008, 33(18): 2059-2061.

    [8] Geng J H, Wu J F, Jiang S B, et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm [J]. Optics Letters, 2007, 32(4): 355-357.

    [9] Yang Q, Xu S H, Li C, et al. A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 μm [J]. Chinese Physics Letters, 2015, 32(9): 094206.

    [10] He X, Xu S H, Li C, et al. 1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber [J]. Optics Express, 2013, 21(18): 20800-20805.

    [11] Yin T C, Song Y F, Jiang X G, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 μm waveband [J]. Optics Express, 2019, 27(11): 15794-15799.

    [12] Yao B, Chen Q F, Chen Y J, et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity [J]. Chinese Journal of Lasers, 2021, 48(5): 0501014.

    [13] Fu S J, Shi W, Lin J C, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber [J]. Optics Letters, 2015, 40(22): 5283-5286.

    [14] Fu S J, Shi W, Sheng Q, et al. Compact hundred-mW 2 μm single-frequency thulium-doped silica fiber laser [J]. IEEE Photonics Technology Letters, 2017, 29(11): 853-856.

    [15] Guan X C, Yang C S, Qiao T, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm [J]. Optics Express, 2018, 2(6): 6817-6825.

    [16] Guan X C, Yang C S, Gu Q, et al. 55 W kilohertz-linewidth core-and in-band-pumped linearly polarized single-frequency fiber laser at 1950 nm [J]. Optics Letters, 2020, 45(8): 2343-2346.

    [17] Zhang Q, Hou Y B, Song W H, et al. Pump RIN coupling to frequency noise of a polarization-maintaining 2 μm single frequency fiber laser [J]. Optics Express, 2021, 29(3): 3221-3229.

    [18] Zhang W N, Li C, Mo S P, et al. A compact low noise single frequency linearly polarized DBR fiber laser at 1550 nm [J]. Chinese Physics Letters, 2012, 29(8): 084205.

    [19] Wei S S, Liu Y H, Chen Q F, et al. Sideband-locked high-power 780 nm laser source for precise measurement based on Rb atoms [J]. Chinese Journal of Lasers, 2021, 48(7): 0701008.

    CHEN Yujun, YAO Bo, LIU Haowei, WEI Shanshan, MAO Qinghe. Development of single-longitudinal-mode DBR fiber laser based on thulium-doped silica glass fiber[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 56
    Download Citation