• Acta Optica Sinica
  • Vol. 40, Issue 20, 2010002 (2020)
Deyang Wu1、5, Jing Zhao1、5、***, Guoping Wang2、4、*, Xiaodan Zhang1、5, Sheng Li2、4, Yong Tang1、5、**, and Changbo Qu3
Author Affiliations
  • 1College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 0 66004 China
  • 2School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • 3College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 4Beijing Engineering Technology Research Center of Virtual Simulation and Visualization, Peking University, Beijing 100871, China
  • 5Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, Hebei 0 66004
  • show less
    DOI: 10.3788/AOS202040.2010002 Cite this Article Set citation alerts
    Deyang Wu, Jing Zhao, Guoping Wang, Xiaodan Zhang, Sheng Li, Yong Tang, Changbo Qu. An Image Zero Watermarking Technology Based on Ameliorated Singular Value and Subblock Mapping[J]. Acta Optica Sinica, 2020, 40(20): 2010002 Copy Citation Text show less
    Preprocessing process of copyright watermark
    Fig. 1. Preprocessing process of copyright watermark
    Process of constructing zero watermark and extracting copyright watermark. (a) Generate zero watermark; (b) extract copyright watermark
    Fig. 2. Process of constructing zero watermark and extracting copyright watermark. (a) Generate zero watermark; (b) extract copyright watermark
    Carrier images and copyright watermark. (a) Baboon image; (b) barbara image; (c) boat image; (d) couple image; (e) elaine image; (f) goldhill image; (g) lena image; (h) paper image; (i) sailboat image; (j) copyright logo; (k) watermark mapped; (l) QR code
    Fig. 3. Carrier images and copyright watermark. (a) Baboon image; (b) barbara image; (c) boat image; (d) couple image; (e) elaine image; (f) goldhill image; (g) lena image; (h) paper image; (i) sailboat image; (j) copyright logo; (k) watermark mapped; (l) QR code
    Relationship between the change rate of maximum singular value and modulation factors. (a) Gaussian noise (0.3); (b) median filtering (template size 11×11); (c) JPEG compression (compression factor 10); (d) rotation attack (5°); (e) column and column offset (5 rows down); (f) crop attack (upper left 1/4)
    Fig. 4. Relationship between the change rate of maximum singular value and modulation factors. (a) Gaussian noise (0.3); (b) median filtering (template size 11×11); (c) JPEG compression (compression factor 10); (d) rotation attack (5°); (e) column and column offset (5 rows down); (f) crop attack (upper left 1/4)
    Combined attack. (a) Gaussian noise+rotation attack; (b) shear attack+Gaussian noise; (c) salt and pepper noise+JPEG compression; (d) median filter+rotation attack; (e) rotation attack+row and column offset; (f) shear attack+JPEG
    Fig. 5. Combined attack. (a) Gaussian noise+rotation attack; (b) shear attack+Gaussian noise; (c) salt and pepper noise+JPEG compression; (d) median filter+rotation attack; (e) rotation attack+row and column offset; (f) shear attack+JPEG
    Zero watermark security test. (a) Baboon image; (b) barbara image; (c) boat image; (d) couple image; (e) elaine image; (f) goldhill image; (g) lena image; (h) paper image; (i) sailboat image
    Fig. 6. Zero watermark security test. (a) Baboon image; (b) barbara image; (c) boat image; (d) couple image; (e) elaine image; (f) goldhill image; (g) lena image; (h) paper image; (i) sailboat image
    Comparison results of different algorithms. (a) Gaussian noise; (b) median filter; (c) JPEG compression; (d) rotation attack; (e) row and colum offset; (f) crop position
    Fig. 7. Comparison results of different algorithms. (a) Gaussian noise; (b) median filter; (c) JPEG compression; (d) rotation attack; (e) row and colum offset; (f) crop position
    ItemBaboonBarbaraBoatCoupleElaineGoldhillLenaPaperSailboat
    Baboon1.00000.49810.70670.67440.72800.53170.61510.69630.6087
    Barbara0.49811.00000.55040.60360.51290.64980.58560.56820.6564
    Boat0.70670.55041.00000.73720.72970.71500.71570.62680.6793
    Couple0.67440.60360.73721.00000.68550.71350.76380.67250.7280
    Elaine0.72800.51290.72970.68551.00000.67030.73720.65380.6391
    Goldhill0.53170.64980.71500.71350.67031.00000.72740.59150.7355
    Lena0.61510.58560.71570.76380.73720.72741.00000.56040.7640
    Paper0.69630.56820.62680.67250.65380.59150.56041.00000.5219
    Sailboat0.60870.65640.67930.72800.63910.73550.76400.52191.0000
    Table 1. Experiment results of false alarm rate
    Attack typeParameterBaboonBarbaraBoatCoupleElaineGoldhillLenaPaperSailboat
    Salt & pepper noise0.010.99480.99831.00001.00001.00000.99740.99830.99740.9965
    0.050.98780.99130.99310.98610.99480.98950.99830.99220.9957
    Gaussian noise0.010.98870.99310.99300.98000.99220.98610.99310.99040.9930
    0.050.98090.98430.98250.96600.98350.98010.98440.98690.9737
    Speckle noise0.010.99310.99830.99650.99481.00000.99480.99830.99741.0000
    0.050.98610.99830.99300.98960.99650.99300.99300.99310.9896
    Median filtering3×30.99480.99651.00000.99481.00000.99830.99651.00000.9895
    9×90.98010.99130.98530.98780.99650.99650.99130.99310.9825
    Wiener filtering3×30.99650.99831.00000.99831.00000.99651.00001.00000.9930
    9×90.99310.99130.99130.99651.00000.99650.99480.99650.9895
    Low pass filtering3×30.99131.00000.99650.99830.99830.99650.99830.99650.9930
    9×90.99130.99650.99480.99830.99830.99650.99830.99650.9860
    JPEG compression101.00000.99650.99131.00000.99650.99390.99650.99830.9965
    501.00001.00000.99650.99831.00000.99830.99830.99741.0000
    Table 2. Experimental results of non-geometry attack
    Attack typeItemBaboonBarbaraBoatCoupleElaineGoldhillLenaPaperSailboat
    Rotation /(°)10.97760.98190.97550.97040.97540.97550.98360.98010.9577
    20.95380.95120.95490.95670.95330.96130.98370.96250.9376
    50.90360.91480.91090.89980.87550.89770.93770.88110.9038
    CuttingUpper left 1/40.93920.97050.93960.93140.94470.94710.95550.96230.9755
    Center 1/40.93680.96230.94470.94610.96330.96390.95150.94410.9650
    Bottom right 1/40.94980.96210.94160.95940.93140.97370.96020.96570.9477
    Move1 line0.99480.98780.99390.99131.00000.99300.99830.98610.9965
    2 line0.99310.98430.98690.98610.99830.97920.99650.98430.9869
    5 column0.95140.95860.97550.95740.96840.95310.94060.94920.9489
    Table 3. Experimental results of geometry attack
    Attack typeParameterSVDASVD
    NCBER /%NCBER /%
    Gaussian noise0.20.377752.340.99130.98
    Median filtering5×50.692330.571.00000.00
    JPE compression200.595239.160.99830.20
    Rotation /(°)20.305853.910.95754.79
    CuttingUpper left1/40.91219.470.96483.91
    Move5 line0.309754.390.98951.17
    Table 4. Performance comparison between SVD and ASVD
    Deyang Wu, Jing Zhao, Guoping Wang, Xiaodan Zhang, Sheng Li, Yong Tang, Changbo Qu. An Image Zero Watermarking Technology Based on Ameliorated Singular Value and Subblock Mapping[J]. Acta Optica Sinica, 2020, 40(20): 2010002
    Download Citation