• Photonics Research
  • Vol. 13, Issue 5, 1365 (2025)
Tian Xia1, Jia Ma1, Zhenwei Xie1,2,*, and Xiaocong Yuan1,3,*
Author Affiliations
  • 1Nanophotonics Research Centre, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
  • 2e-mail: ayst31415926@szu.edu.cn
  • 3e-mail: xcyuan@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.541783 Cite this Article Set citation alerts
    Tian Xia, Jia Ma, Zhenwei Xie, Xiaocong Yuan, "Symmetric and asymmetric Hall effect-like splitting of optical Stokes skyrmions via a hybrid multi-zone filter," Photonics Res. 13, 1365 (2025) Copy Citation Text show less
    References

    [1] T. H. R. Skyrme. A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-569(1962).

    [2] A. Fert, V. Cros, J. Sampaio. Skyrmions on the track. Nat. Nanotechnol., 8, 152-156(2013).

    [3] I. Kézsmárki, S. Bordács, P. Milfde. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater., 14, 1116-1122(2015).

    [4] D. Maccariello, W. Legrand, N. Reyren. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol., 13, 233-237(2018).

    [5] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [6] N. Romming, C. Hanneken, M. Menzel. Writing and deleting single magnetic skyrmions. Science, 341, 636-639(2013).

    [7] J. Sampaio, V. Cros, S. Rohart. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol., 8, 839-844(2013).

    [8] X. Z. Yu, N. Kanazawa, W. Z. Zhang. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun., 3, 988(2012).

    [9] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [10] M. Song, L. Feng, P. Huo. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol., 18, 71-78(2023).

    [11] Q. Zhang, Z. He, Z. Xie. Diffractive optical elements 75 years on: from micro-optics to metasurfaces. Photon. Insights, 2, R09(2023).

    [12] Y. Fang, Y. Liu. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation. Adv. Photon. Nexus, 2, 046009(2023).

    [13] Y. Shen, Q. Zhang, P. Shi. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics, 18, 15-25(2024).

    [14] Y. Shen, B. Yu, H. Wu. Topological transformation and free-space transport of photonic hopfions. Adv. Photon., 5, 015001(2023).

    [15] P. Shi, L. Du, X. Yuan. Spin photonics: from transverse spin to photonic skyrmions. Nanophotonics, 10, 3927-3943(2021).

    [16] S. Tsesses, E. Ostrovsky, K. Cohen. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [17] L. Du, A. Yang, A. V. Zayats. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [18] Z.-L. Deng, T. Shi, A. Krasnok. Observation of localized magnetic plasmon skyrmions. Nat. Commun., 13, 8(2022).

    [19] S. Tsesses, K. Cohen, E. Ostrovsky. Spin–orbit interaction of light in plasmonic lattices. Nano Lett., 19, 4010-4016(2019).

    [20] M. Lin, W. Zhang, C. Liu. Photonic spin skyrmion with dynamic position control. ACS Photon., 8, 2567-2572(2021).

    [21] T. V. Mechelen, Z. Jacob. Photonic Dirac monopoles and skyrmions: spin-1 quantization [Invited]. Opt. Mater. Express, 9, 95-111(2019).

    [22] W. Lin, Y. Ota, Y. Arakawa. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [23] A. Karnieli, S. Tsesses, G. Bartal. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [24] Y. Ilin, S. Tsesses, G. Bartal. Sub-wavelength spin excitations in ultracold gases created by stimulated Raman transitions. New J. Phys., 22, 093071(2020).

    [25] Y. Shen, Y. Hou, N. Papasimakis. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [26] M. Król, H. Sigurdsson, K. Rechcińska. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [27] X. Lei, A. Yang, P. Shi. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [28] C. Guo. Meron spin textures in momentum space. Phys. Rev. Lett., 124, 106103(2020).

    [29] Y. Dai, Z. Zhou, A. Ghosh. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [30] S. Gao, F. C. Speirits, F. Castellucci. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [31] Y. Shen. Topological bimeronic beams. Opt. Lett., 46, 3737-3740(2021).

    [32] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photon., 9, 296-303(2022).

    [33] A. S. Rao. Optical skyrmions in the Bessel profile. J. Opt. Soc. Am. A, 41, 1059-1069(2024).

    [34] A. McWilliam, C. M. Cisowski, Z. Ye. Topological approach of characterizing optical skyrmions and multi-skyrmions. Laser Photon. Rev., 17, 2300155(2023).

    [35] R. Tamura, P. Kumar, A. S. Rao. Direct imprint of optical skyrmions in azopolymers as photoinduced relief structures. APL Photon., 9, 046104(2024).

    [36] P. Ornelas, I. Nape, R. de Mello Koch. Non-local skyrmions as topologically resilient quantum entangled states of light. Nat. Photonics, 18, 258-266(2024).

    [37] W. Jiang, X. Zhang, G. Yu. Direct observation of the skyrmion Hall effect. Nat. Phys., 13, 162-169(2017).

    [38] X. Zhang, Y. Zhou, M. Ezawa. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep., 6, 24795(2016).

    [39] X. Zhang, Y. Zhou, M. Ezawa. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun., 7, 10293(2016).

    [40] Y. Hirata, D.-H. Kim, S. K. Kim. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol., 14, 232-236(2019).

    Tian Xia, Jia Ma, Zhenwei Xie, Xiaocong Yuan, "Symmetric and asymmetric Hall effect-like splitting of optical Stokes skyrmions via a hybrid multi-zone filter," Photonics Res. 13, 1365 (2025)
    Download Citation